算法的时间复杂度和空间复杂度

目录

1.算法效率

1.1算法的复杂度

2.时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算举例

3.空间复杂度

4.复杂度oj练习题:

4.1消失的数字OJ

4.2 旋转数组


1.算法效率

1.1算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度

时间复杂度主要衡量一个算法的运行快慢

而空间复杂度主要衡量一个算法运行所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。(主要关注时间)

摩尔定律:18个月,性能翻倍,价格降低

2.时间复杂度

2.1 时间复杂度的概念

  • 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法运行时间与硬件配置有关,所以同样一个算法是没有办法算出准确时间的

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

准确的时间复杂度函数式:F(N) = N*N + 2*N + 10

通过函数式计算的是算法运行准确次数(时间复杂度=次数)

当N = 10时, F(N) = 130

当N = 100时, F(N) = 10210

当N = 1000时, F(N) = 1002010

随着N越大后两项对结果的影响可以忽略不计

但是准确时间复杂度函数,不方便在算法之间进行比较,所以引用了大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。(大概估算、方便比较

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

估算 O(N^2)

当N = 10时, F(N) = 100

当N = 100时, F(N) = 10000

当N = 1000, F(N) = 1000000

通俗来说,时间复杂度估算就是算它属于哪一个量级

算法分隔:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

底线思维、兜底思维

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

算时间复杂度不能去数循环,这个不一定准确,一定要看算法思维来进行计算

时间复杂度是计算算法的执行次数的,一个执行次数,不一定是一条语句,可能是多条语句,但肯定是常数条(就是算大头)

小提示:

因为要在文本中写对数不好写,而在时间复杂度中,以2为底的logN经常出现,所以我们简写为logN(把2省略)

有些书籍和博客资料中会简写成lgN其实是不太对的,但如果看见这样的写法要知道其实写的是以2为底的logN

如果用换地公式忽略掉系数,lgN也是可以的

但是建议都写成logN,因为在数学中lgN是以10为底,存在误区

最后建议,自己写的时候用logN,严谨一点。

2.3常见时间复杂度计算举例

//1.
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

//基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

//2.
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

//基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

//不知道M和N的大小    O(N+M)  一般没有说明的情况
//N远大于M      O(N)
//M远大于N      O(M)
//M和N一样大    O(N)或者O(M)

//3.
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

//基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
//用常数1取代运行时间中的所有加法常数。O(1)不是表示一次,而是表示常数次
//4.
// 计算strchr的时间复杂度?
//功能:在字符串数组中查找一个字符
const char * strchr ( const char * str, int character );
while(*str)
{
    if(*str == char)
}

//基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

//5.
// 计算BubbleSort的时间复杂度?

void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

//F(N) = N-1 + N-2 +...+ 2 + 1  是一个等差数列

//基本操作执行最好N次,最坏执行了(N*(N+1))/2次
//通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
//6.
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);

int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}

//二分查找  折半多少次就除了多少个2  除了多少个2就找了多少次 (折纸方法)
//假设折半查找了x次   2^x = N ->  x = logN

//基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) 
//ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
//7.
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;

return Fac(N-1)*N;
}

//通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

//8.
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;

return Fib(N-1) + Fib(N-2);
}

//等比数列公式
//通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

fib只有理论意义没有实际价值

可以把递归改成循环,时间复杂度是O(N)

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用(额外)存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:

函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

时间是累计的

空间不累积,销毁了还可以重复使用

//1.
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

//使用了常数个额外空间,所以空间复杂度为 O(1)

//2
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;

long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}

//动态开辟了N个空间,空间复杂度为 O(N)
//3
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}

//递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4.复杂度oj练习题:

4.1消失的数字OJ

数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?

思路1:时间复杂度O(N) 空间复杂度O(N)

思路2:

其他数出现两次,只有缺失的那个数字出现一次

(异或:对应的二进制位是相同为0,相异为1)

所以一组数组中,两个相同数字异或后就没了

int missingNumber(int* nums, int numsSize){
    int x = 0;
    for(int i = 0;i<numsSize;i++)
    {
        x ^= nums[i];
    }

    for(int j = 0;j<numsSize+1;++j)
    {
        x ^= j;
    }

    return x;

}

思路3:

思路4:(最优)

4.2 旋转数组

给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

输入: nums = [1,2,3,4,5,6,7], k = 3

输出: [5,6,7,1,2,3,4]

解释:

向右轮转 1 步: [7,1,2,3,4,5,6]

向右轮转 2 步: [6,7,1,2,3,4,5]

向右轮转 3 步: [5,6,7,1,2,3,4]

进阶:

  • 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
  • 你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
  • 时间复杂度为O(N)

思路1:

把最后一个数用tmp保存起来,把前面n-1个数往后挪,再把tmp放在第一个

在外面套上一个循环

每次旋转一个,旋转k次

空间复杂度为 O(1)

时间复杂度为O(N*k)

不能满足要求

思路2:

以空间换时间

开辟一个额外空间

不满足要求

思路3:最优

三次逆置

void resever(int* a,int left,int right)
{
    while(left<right)
    {
    int tmp = a[left];
    a[left] = a[right];
    a[right] = tmp;
    ++left;
    --right;
    }
}



void rotate(int* nums, int numsSize, int k){
    k %= numsSize;
  resever(nums,numsSize-k,numsSize-1);
  resever(nums,0,numsSize-k-1);
  resever(nums,0,numsSize-1);


}

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hey pear!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值