SAS时间序列分析案例--有季节效应的非平稳序列分析

SAS有季节效应非平稳时间序列分析案例

前言:前一篇介绍了对平稳时间序列的分析方法和流程,在没有考虑季节效应的情况下,模型建立的并不成功。本篇以美国1980年-2015年月度失业率为对象,进行一个更为完善的、有季节效应的非平稳时间序列分析流程。
理论支持:
拿到非平稳时间序列,首先进行的就是差分法消除趋势性,然后根据情况判断拟合季节加法模型或乘法模型,最后进行模型检验。常用的模型有两种:ARIMA和因素分解模型。

  1. ARIMA(加、乘法)模型,本篇分析采用。
  2. 因素分解模型:序列收三个因素影响:长期趋势,季节效应,随机波动。剔除前两者后留下随机波动。使用方法为简单中心移动平均法提取趋势效应,加法乘法提取季节效应。数学运算涉及较多,步骤繁琐,此处不多赘述。

步骤:
一. 数据录入,做出时序图

data unem;
input rate@@;
time=intnx('month','01jan1980'd, _n_ -1);
format time monyy.;
cards;
…………
;
run;
proc gplot data=unem;
plot rate*time/ vaxis=2 to 
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值