应用时间序列分析--有季节效应的非平稳序列分析-ARIMA乘法模型-R语言

本文探讨了1948-1981年美国女性月度失业率数据的季节效应与长期趋势,通过比较加法与乘法模型,发现复杂交互影响下乘法模型更优。最终拟合了ARIMA(1, (1,12), 1)和季节乘法模型ARIMA(1, 1, 1)×(0, 1, 1, 12),并验证了乘法模型的显著性与预测效果。
摘要由CSDN通过智能技术生成

       在上一篇文章(http://t.csdn.cn/Lp2Nj)中,我们用到的数据是一个既含有季节效应又含有长期趋势效应的简单序列,为什么说它简单呢,是因为这种序列的季节效应、趋势效应和随机波动彼此之间很容易分开,在这种情况下,可以用简单的季加法模型来拟合该序列的发展。
       在实际生活中,简单序列的情况有但是少,更为常见的情况是,序列的季节效应、长期趋势效应和随机波动之间存在复杂的交互影响关系,在这种情况下,简单的季节加法模型并不足以充分提取其中的相关关系,这时我们通常采用季节乘法模型拟合这一序列。

        我们以一个例子来说明什么时候用加法模型,什么时候用乘法模型拟合序列,便于理解。以1948-1981年美国女性(20岁以上)月度失业率数据为例,拟合该序列。序列数据如下(建议将数据保存为csv类型文件):

timex
1948/1/1446
1948/2/1650
1948/3/1592
1948/4/1561
1948/5/1491
1948/6/1592
1948/7/1604
1948/8/1635
1948/9/1580
######510
######553
######554
1949/1/1628
1949/2/1708
1949/3/1629
1949/4/1724
1949/5/1820
1949/6/1865
1949/7/11007
1949/8/11025
1949/9/1955
######889
######965
######878
1950/1/11103
1950/2/11092
1950/3/1978
1950/4/1823
1950/5/1827
1950/6/1928
1950/7/1838
1950/8/1720
1950/9/1756
######658
######838
######684
1951/1/1779
1951/2/1754
1951/3/1794
1951/4/1681
1951/5/1658
1951/6/1644
1951/7/1622
1951/8/1588
1951/9/1720
######670
######746
######616
1952/1/1646
1952/2/1678
1952/3/1552
1952/4/1560
1952/5/1578
1952/6/1514
1952/7/1541
1952/8/1576
1952/9/1522
######530
######564
######442
1953/1/1520
1953/2/1484
1953/3/1538
1953/4/1454
1953/5/1404
1953/6/1424
1953/7/1432
1953/8/1458
1953/9/1556
######506
######633
######708
1954/1/11013
1954/2/11031
1954/3/11101
1954/4/11061
1954/5/11048
1954/6/11005
1954/7/1987
1954/8/11006
1954/9/11075
######854
######1008
######777
1955/1/1982
1955/2/1894
1955/3/1795
1955/4/1799
1955/5/1781
1955/6/1776
1955/7/1761
1955/8/1839
1955/9/1842
######811
######843
######753
1956/1/1848
1956/2/1756
1956/3/1848
1956/4/1828
1956/5/1857
1956/6/1838
1956/7/1986
1956/8/1847
1956/9/1801
######739
######865
######767
1957/1/1941
1957/2/1846
1957/3/1768
1957/4/1709
1957/5/1798
1957/6/1831
1957/7/1833
1957/8/1798
1957/9/1806
######771
######951
######799
1958/1/11156
1958/2/11332
1958/3/11276
1958/4/11373
1958/5/11325
1958/6/11326
1958/7/11314
1958/8/11343
1958/9/11225
######1133
######1075
######1023
1959/1/11266
1959/2/11237
1959/3/11180
1959/4/11046
1959/5/11010
1959/6/11010
1959/7/11046
1959/8/1985
1959/9/1971
######1037
######1026
######947
1960/1/11097
1960/2/11018
1960/3/11054
1960/4/1978
1960/5/1955
1960/6/11067
1960/7/11132
1960/8/11092
1960/9/11019
######1110
######1262
######1174
1961/1/11391
1961/2/11533
1961/3/11479
1961/4/11411
1961/5/11370
1961/6/11486
1961/7/11451
1961/8/11309
1961/9/11316
######1319
######1233
######1113
1962/1/11363
1962/2/11245
1962/3/11205
1962/4/11084
1962/5/11048
1962/6/11131
1962/7/11138
1962/8/11271
1962/9/11244
######1139
######1205
######1030
1963/1/11300
1963/2/11319
1963/3/11198
1963/4/11147
1963/5/11140
1963/6/11216
1963/7/11200
1963/8/11271
1963/9/11254
######1203
######1272
######1073
1964/1/11375
1964/2/11400
1964/3/11322
1964/4/11214
1964/5/11096
1964/6/11198
1964/7/11132
1964/8/11193
1964/9/11163
######1120
######1164
######966
1965/1/11154
1965/2/11306
1965/3/11123
1965/4/11033
1965/5/1940
1965/6/11151
1965/7/11013
1965/8/11105
1965/9/11011
######963
######1040
######838
1966/1/11012
1966/2/1963
1966/3/1888
1966/4/1840
1966/5/1880
1966/6/1939
1966/7/1868
1966/8/11001
1966/9/1956
######966
######896
######843
1967/1/11180
1967/2/11103
1967/3/11044
1967/4/1972
1967/5/1897
1967/6/11103
1967/7/11056
1967/8/11055
1967/9/11287
######1231
######1076
######929
1968/1/11105
1968/2/11127
1968/3/1988
1968/4/1903
1968/5/1845
1968/6/11020
1968/7/1994
1968/8/11036
1968/9/11050
######977
######956
######818
1969/1/11031
1969/2/11061
1969/3/1964
1969/4/1967
1969/5/1867
1969/6/11058
1969/7/1987
1969/8/11119
1969/9/11202
######1097
######994
######840
1970/1/11086
1970/2/11238
1970/3/11264
1970/4/11171
1970/5/11206
1970/6/11303
1970/7/11393
1970/8/11463
1970/9/11601
######1495
######1561
######1404
1971/1/11705
1971/2/11739
1971/3/11667
1971/4/11599
1971/5/11516
1971/6/11625
1971/7/11629
1971/8/11809
1971/9/11831
######1665
######1659
######1457
1972/1/11707
1972/2/11607
1972/3/11616
1972/4/11522
1972/5/11585
1972/6/11657
1972/7/11717
1972/8/11789
1972/9/11814
######1698
######1481
######1330
1973/1/11646
1973/2/11596
1973/3/11496
1973/4/11386
1973/5/11302
1973/6/11524
1973/7/11547
1973/8/11632
1973/9/11668
######1421
######1475
######1396
1974/1/11706
1974/2/11715
1974/3/11586
1974/4/11477
1974/5/11500
1974/6/11648
1974/7/11745
1974/8/11856
1974/9/12067
######1856
######2104
######2061
1975/1/12809
1975/2/12783
1975/3/12748
1975/4/12642
1975/5/12628
1975/6/12714
1975/7/12699
1975/8/12776
1975/9/12795
######2673
######2558
######2394
1976/1/12784
1976/2/12751
1976/3/12521
1976/4/12372
1976/5/12202
1976/6/12469
1976/7/12686
1976/8/12815
1976/9/12831
######2661
######2590
######2383
1977/1/12670
1977/2/12771
1977/3/12628
1977/4/12381
1977/5/12224
1977/6/12556
1977/7/12512
1977/8/12690
1977/9/12726
######2493
######2544
######2232
1978/1/12494
1978/2/12315
1978/3/12217
1978/4/12100
1978/5/12116
1978/6/12319
1978/7/12491
1978/8/12432
1978/9/12470
######2191
######2241
######2117
1979/1/12370
1979/2/12392
1979/3/12255
1979/4/12077
1979/5/12047
1979/6/12255
1979/7/12233
1979/8/12539
1979/9/12394
######2341
######2231
######2171
1980/1/12487
1980/2/12449
1980/3/12300
1980/4/12387
1980/5/12474
1980/6/12667
1980/7/12791
1980/8/12904
1980/9/12737
######2849
######2723
######2613
1981/1/12950
1981/2/12825
1981/3/12717
1981/4/12593
1981/5/12703
1981/6/12836
1981/7/12938
1981/8/12975
1981/9/13064
######3092
######3063
######2991
timex
1948/1/1446
1948/2/1650
1948/3/1592
1948/4/1561
1948/5/1491
1948/6/1592
1948/7/1604
1948/8/1635
1948/9/1580
######510
######553
######554
1949/1/1628
1949/2/1708
1949/3/1629
1949/4/1724
1949/5/1820
1949/6/1865
1949/7/11007
1949/8/11025
1949/9/1955
######889
######965
######878
1950/1/11103
1950/2/11092
1950/3/1978
1950/4/1823
1950/5/1827
1950/6/1928
1950/7/1838
1950/8/1720
1950/9/1756
######658
######838
######684
1951/1/1779
1951/2/1754
1951/3/1794
1951/4/1681
1951/5/1658
1951/6/1644
1951/7/1622
1951/8/1588
1951/9/1720
######670
######746
######616
1952/1/1646
1952/2/1678
1952/3/1552
1952/4/1560
1952/5/1578
1952/6/1514
1952/7/1541
1952/8/1576
1952/9/1522
######530
######564
######442
1953/1/1520
1953/2/1484
1953/3/1538
1953/4/1454
1953/5/1404
1953/6/1424
1953/7/1432
1953/8/1458
1953/9/1556
######506
######633
######708
1954/1/11013
1954/2/11031
1954/3/11101
1954/4/11061
1954/5/11048
1954/6/11005
1954/7/1987
1954/8/11006
1954/9/11075
######854
######1008
######777
1955/1/1982
1955/2/1894
1955/3/1795
1955/4/1799
1955/5/1781
1955/6/1776
1955/7/1761
1955/8/1839
1955/9/1842
######811
######843
######753
1956/1/1848
1956/2/1756
1956/3/1848
1956/4/1828
1956/5/1857
1956/6/1838
1956/7/1986
1956/8/1847
1956/9/1801
######739
######865
######767
1957/1/1941
1957/2/1846
1957/3/1768
1957/4/1709
1957/5/1798
1957/6/1831
1957/7/1833
1957/8/1798
1957/9/1806
######771
######951
######799
1958/1/11156
1958/2/11332
1958/3/11276
1958/4/11373
1958/5/11325
1958/6/11326
1958/7/11314
1958/8/11343
1958/9/11225
######1133
######1075
######1023
1959/1/11266
1959/2/11237
1959/3/11180
1959/4/11046
1959/5/11010
1959/6/11010
1959/7/11046
1959/8/1985
1959/9/1971
######1037
######1026
######947
1960/1/11097
1960/2/11018
1960/3/11054
1960/4/1978
1960/5/1955
1960/6/11067
1960/7/11132
1960/8/11092
1960/9/11019
######1110
######1262
######1174
1961/1/11391
1961/2/11533
1961/3/11479
1961/4/11411
1961/5/11370
1961/6/11486
1961/7/11451
1961/8/11309
1961/9/11316
######1319
######1233
######1113
1962/1/11363
1962/2/11245
1962/3/11205
1962/4/11084
1962/5/11048
1962/6/11131
1962/7/11138
1962/8/11271
1962/9/11244
######1139
######1205
######1030
1963/1/11300
1963/2/11319
1963/3/11198
1963/4/11147
1963/5/11140
1963/6/11216
1963/7/11200
1963/8/11271
1963/9/11254
######1203
######1272
######1073
1964/1/11375
1964/2/11400
1964/3/11322
1964/4/11214
1964/5/11096
1964/6/11198
1964/7/11132
1964/8/11193
1964/9/11163
######1120
######1164
######966
1965/1/11154
1965/2/11306
1965/3/11123
1965/4/11033
1965/5/1940
1965/6/11151
1965/7/11013
1965/8/11105
1965/9/11011
######963
######1040
######838
1966/1/11012
1966/2/1963
1966/3/1888
1966/4/1840
1966/5/1880
1966/6/1939
1966/7/1868
1966/8/11001
1966/9/1956
######966
######896
######843
1967/1/11180
1967/2/11103
1967/3/11044
1967/4/1972
1967/5/1897
1967/6/11103
1967/7/11056
1967/8/11055
1967/9/11287
######1231
######1076
######929
1968/1/11105
1968/2/11127
1968/3/1988
1968/4/1903
1968/5/1845
1968/6/11020
1968/7/1994
1968/8/11036
1968/9/11050
######977
######956
######818
1969/1/11031
1969/2/11061
1969/3/1964
1969/4/1967
1969/5/1867
1969/6/11058
1969/7/1987
1969/8/11119
1969/9/11202
######1097
######994
######840
1970/1/11086
1970/2/11238
1970/3/11264
1970/4/11171
1970/5/11206
1970/6/11303
1970/7/11393
1970/8/11463
1970/9/11601
######1495
######1561
######1404
1971/1/11705
1971/2/11739
1971/3/11667
1971/4/11599
1971/5/11516
1971/6/11625
1971/7/11629
1971/8/11809
1971/9/11831
######1665
######1659
######1457
1972/1/11707
1972/2/11607
1972/3/11616
1972/4/11522
1972/5/11585
1972/6/11657
1972/7/11717
1972/8/11789
1972/9/11814
######1698
######1481
######1330
1973/1/11646
1973/2/11596
1973/3/11496
1973/4/11386
1973/5/11302
1973/6/11524
1973/7/11547
1973/8/11632
1973/9/11668
######1421
######1475
######1396
1974/1/11706
1974/2/11715
1974/3/11586
1974/4/11477
1974/5/11500
1974/6/11648
1974/7/11745
1974/8/11856
1974/9/12067
######1856
######2104
######2061
1975/1/12809
1975/2/12783
1975/3/12748
1975/4/12642
1975/5/12628
1975/6/12714
1975/7/12699
1975/8/12776
1975/9/12795
######2673
######2558
######2394
1976/1/12784
1976/2/12751
1976/3/12521
1976/4/12372
1976/5/12202
1976/6/12469
1976/7/12686
1976/8/12815
1976/9/12831
######2661
######2590
######2383
1977/1/12670
1977/2/12771
1977/3/12628
1977/4/12381
1977/5/12224
1977/6/12556
1977/7/12512
1977/8/12690
1977/9/12726
######2493
######2544
######2232
1978/1/12494
1978/2/12315
1978/3/12217
1978/4/12100
1978/5/12116
1978/6/12319
1978/7/12491
1978/8/12432
1978/9/12470
######2191
######2241
######2117
1979/1/12370
1979/2/12392
1979/3/12255
1979/4/12077
1979/5/12047
1979/6/12255
1979/7/12233
1979/8/12539
1979/9/12394
######2341
######2231
######2171
1980/1/12487
1980/2/12449
1980/3/12300
1980/4/12387
1980/5/12474
1980/6/12667
1980/7/12791
1980/8/12904
1980/9/12737
######2849
######2723
######2613
1981/1/12950
1981/2/12825
1981/3/12717
1981/4/12593
1981/5/12703
1981/6/12836
1981/7/12938
1981/8/12975
1981/9/13064
######3092
######3063
######2991

        首先,绘制观察值序列的时序图:

        由于数据是以月度为单位记录的数据,即一年中记录12次数据,所以生成时间序列时,frequency为12。

m<-read.csv("C:\\Users\\86191\\Desktop\\A1_21.csv",sep=',',header = T)
x<-ts(m$x,start = c(1948,1),frequency = 12)


#绘制时序图
plot(
  x,
  main = "1948年-1981年美国女性(20岁以上)月度失业率",
  xlab = "年份",ylab="gov_cons",
  xlim = c(1948,1982),ylim=c(0,4000),
  type="o",
  pch=20,
)

        绘制的时序图如下:

         从时序图上可以看到,该序列具有长期递增趋势和以年为周期的季节效应。显然不是一个平稳序列。接下来,我们对该序列进行差分平稳化,提取它的趋势,季节效应。

        其次,差分平稳化:对原序列作1阶12步差分,希望提取原序列的趋势效应和季节效应。

        首先绘制1阶12步差分后序列的时序图,观察差分后序列的时序图特征。

#绘制一阶差分再以周期时长数目为k的k步差分的时序图
x_diff_12<-diff(diff(x),12)#一阶差分再12步差分
plot(
  x_diff_12,
  main = "1948年-1981年美国女性(20岁以上)月度失业率一阶差分再12步差分",
  type="o",
  pch=20,
)

       1阶12步差分后的序列的时序图如下:

         从时序图上可以看到,1阶12步差分后的序列没有明显的趋势和周期效应,也就是说,从图示法的角度来看,1阶12步差分后的序列呈现平稳特征;接下来对序列进行ADF检验和白噪声检验,判断差分后的序列是否有分析价值。

        从时序图可以看到,序列大致在以0为中心的固定范围内来回波动,在1975年左右,序列的波动程度较大,超过了其他时期的波动幅度,但整体上看,是不满足异方差性的,可认为这一数据是特殊值,因此,对1阶12步差分后的序列选择检验nc类型的ADF检验。

#对一阶差分再以周期时长数目为k的k步差分后的序列进行平稳性检验
library(fBasics)
library(fUnitRoots)
for(i in 0:2) print(
  adfTest(x_diff_12,
          lag=i,
          type="nc",
          title = "1948年-1981年美国女性(20岁以上)月度失业率单位根检验"))

        检验结果如下:

Title:
 1948年-1981年美国女性(20岁以上)月度失业率单位根检验

Test Results:
  PARAMETER:
    Lag Order: 0
  STATISTIC:
    Dickey-Fuller: -22.8143
  P VALUE:
    0.01 

Description:
 Thu Nov 24 07:43:50 2022 by user: 86191


Title:
 1948年-1981年美国女性(20岁以上)月度失业率单位根检验

Test Results:
  PARAMETER:
    Lag Order: 1
  STATISTIC:
    Dickey-Fuller: -12.5233
  P VALUE:
    0.01 

Description:
 Thu Nov 24 07:43:50 2022 by user: 86191


Title:
 1948年-1981年美国女性(20岁以上)月度失业率单位根检验

Test Results:
  PARAMETER:
    Lag Order: 2
  STATISTIC:
    Dickey-Fuller: -9.7853
  P VALUE:
    0.01 

Description:
 Thu Nov 24 07:43:50 2022 by user: 86191

Warning messages:
1: In adfTest(x_diff_12, lag = i, type = "nc", title = "1948年-1981年美国女性(20岁以上)月度失业率单位根检验") :
  p-value smaller than printed p-value
2: In adfTest(x_diff_12, lag = i, type = "nc", title = "1948年-1981年美国女性(20岁以上)月度失业率单位根检验") :
  p-value smaller than printed p-value
3: In adfTest(x_diff_12, lag = i, type = "nc", title = "1948年-1981年美国女性(20岁以上)月度失业率单位根检验") :
  p-value smaller than printed p-value

        检验结果显示,0-2阶延迟的ADF检验,其检验的p值都是0.01,提示信息也告诉我们,其检验的p值其实小于0.01,因此在0.01的显著性水平\alpha下,我们没有充分理由接受ADF检验的原假设:序列非平稳;从而我们选择接受备择假设,认为差分后的序列是平稳的。接下来进行白噪声检验。

#对一阶差分再以周期时长数目为k的k步差分后的序列进行白噪声检验
for(k in 1:2) print(
  Box.test(x_diff_12,
           lag=6*k,
           type="Ljung-Box"))

        结果如下:

Box-Ljung test

data:  x_diff_12
X-squared = 24.692, df = 6, p-value = 0.0003894


    Box-Ljung test

data:  x_diff_12
X-squared = 121.08, df = 12, p-value < 2.2e-16

        检验结果显示,延迟6阶与延迟12阶的检验p值是小于0.001的显著性水平\alpha的,因此在0.001的显著性水平\alpha下,我们没有充分理由接受白噪声检验的原假设:序列是白噪声序列;从而我们选择接受备择假设,认为差分后的序列是非白噪声序列。也就是说,1阶12步差分后的序列是一个平稳非白噪声序列,接下来对该序列(1阶12步差分后的序列)进行模型拟合。

        然后,对差分后的序列进行模型拟合:

        考察序列的自相关图与偏自相关图性质,给拟合模型定阶。

acf(x_diff_12)#绘制一阶差分再以周期时长数目为k的k步差分自相关图
pacf(x_diff_12)#绘制一阶差分再以周期时长数目为k的k步差分偏相关图

         自相关图如下:

        偏自相关图如下:

        从自相关图与偏相关图可以看到,差分后序列的自相关图都显示出了一定的拖尾属性,可以尝试拟合季节加法模型ARIMA(1,(1,12),1)模型;从图上还可以看到,自相关系数和偏自相关系数都有一些缺省,并不是连续的(以偏自相关系数为例,其1阶、2阶、10阶、12阶系数都显著大于2倍标准差,其余系数都在2倍标准差范围内),也可以尝试拟合ARMA((1,2,10,12),(1,12),(1,2,10,12))模型或ARMA((1,12),(1,12),(1,12))模型。

1、拟合ARIMA((1,2,10,12),(1,12)(1,2,10,12))模型并计算其AIC与BIC(SBC)值:

#建立拟合ARMA((1,2,10,12),(1,2,10,12))模型
x_fit_1<-arima(x,order = c(12,1,12),seasonal=list(order=c(0,1,0),period=12),
               method = "CSS",
             transform.pars=FALSE,
             fixed = c(NA,NA,0,0,0,0,0,0,0,NA,0,NA,NA,NA,0,0,0,0,0,0,0,NA,0,NA))
x_fit_1
AIC=-2*x_fit_1$loglik + 2*9
AIC
BIC=-2*x_fit_1$loglik + 9*log(length(x))
BIC
#模型的显著性检验(有效性)-残差序列随机性检验
for(k in 1:2) print(
  Box.test(x_fit_1$residuals,
           lag=6*k,
           type="Ljung-Box"))

        模型拟合信息及模型显著性检验结果如下:

模型拟合信息:

Call:
arima(x = x, order = c(12, 1, 12), seasonal = list(order = c(0, 1, 0), period = 12), 
transform.pars = FALSE, fixed = c(NA, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, NA, NA, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, NA), method = "CSS")

Coefficients:
            ar1          ar2      ar3   ar4  ar5  ar6  ar7 ar8  ar9   ar10     ar11   ar12        ma1      
          -0.0827  0.2030     0     0     0      0      0   0     0    -0.1456   0    0.0084    -0.0219   

 s.e.    0.0629  0.0603     0    0      0      0     0    0     0     0.0620    0    0.0608     0.0447    

           ma2       ma3 ma4  ma5  ma6  ma7  ma8  ma9    ma10   ma11     ma12

           -0.0561     0      0     0      0        0       0       0       0.0630     0       -0.7819
s.e.      0.0427     0      0     0      0        0       0       0       0.0456     0        0.0423

sigma^2 estimated as 7687:  part log likelihood = -2327.58

模型显著性检验结果:

     Box-Ljung test

data:  x_fit_1$residuals
X-squared = 2.4068, df = 6, p-value = 0.8787


    Box-Ljung test

data:  x_fit_1$residuals
X-squared = 4.832, df = 12, p-value = 0.9634

AIC值:

[1] 4673.157

BIC值:

[1] 4709.259

        从结果可以看到,该模型(ARIMA((1,2,10,12),(1,12),(1,2,10,12))模型 )延迟6阶、12阶的模型显著性检验p值均大于0.05的显著性水平\alpha, 因此在0.05的显著性水平\alpha下,我们没有充分理由接受模型显著性检验的原假设;从而我们选择接受备择假设,认为拟合的模型是显著的(有效的)。其AIC值与BIC值分别为4673.157,4709.259。

2、拟合ARIMA((1,12),(1,12),(1,12))模型并计算其AIC与BIC值:

#建立拟合ARMA((1,12),(1,12))模型
x_fit_2<-arima(x,order = c(12,1,12),
               method = "CSS",
               transform.pars=FALSE,
               fixed = c(NA,0,0,0,0,0,0,0,0,0,0,NA,NA,0,0,0,0,0,0,0,0,0,0,NA))
x_fit_2
#模型的显著性检验(有效性)-残差序列随机性检验
for(k in 1:2) print(
  Box.test(x_fit_2$residuals,
           lag=6*k,
           type="Ljung-Box"))
AIC=-2*x_fit_2$loglik + 2*5
AIC
BIC=-2*x_fit_2$loglik + 5*log(length(x))
BIC

        模型拟合信息及模型显著性检验结果如下:

模型拟合信息:

Call:
arima(x = x, order = c(12, 1, 12), seasonal = list(order = c(0, 1, 0), period = 12), 
    transform.pars = FALSE, fixed = c(NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA), method = "CSS")

Coefficients:
                ar1 ar2 ar3  ar4  ar5  ar6  ar7  ar8  ar9  ar10 ar11   ar12       ma1  ma2  ma3  

         -0.1151   0    0     0    0      0    0      0     0      0       0    -0.0474  0.0029    0     0   

 s.e.   0.0798   0    0     0    0      0    0      0     0      0       0     0.0619  0.0629    0     0   

         ma4  ma5  ma6  ma7  ma8  ma9  ma10  ma11     ma12
           0       0       0       0       0        0       0          0    -0.7493

s.e.     0       0       0       0       0        0       0          0      0.0445

sigma^2 estimated as 7997:  part log likelihood = -2335.39

模型显著性检验结果:

    Box-Ljung test

data:  x_fit_2$residuals
X-squared = 11.327, df = 6, p-value = 0.07877


    Box-Ljung test

data:  x_fit_2$residuals
X-squared = 16.121, df = 12, p-value = 0.1858
 

 AIC值:

[1] 4680.779

BIC值:

[1] 4700.836

         从结果可以看到,该模型(ARIMA((1,12),(1,12),(1,12))模型) 延迟6阶、12阶的模型显著性检验p值均大于0.05的显著性水平\alpha, 因此在0.05的显著性水平\alpha下,我们没有充分理由接受模型显著性检验的原假设;从而我们选择接受备择假设,认为拟合的模型是显著的(有效的)。其AIC值与BIC值分别为4680.779,4700.836。

3、拟合季节加法模型ARIMA(1,(1,12),1)模型并计算其AIC与BIC值:

#建立拟合ARMA(1,(1,12),1)模型
x_fit_3<-arima(x,order = c(1,1,1),seasonal=list(order=c(0,1,0),period=12),method = "CSS")#实际拟合模型
x_fit_3
#模型的显著性检验(有效性)-残差序列随机性检验
for(k in 1:2) print(
  Box.test(x_fit_3$residuals,
           lag=6*k,
           type="Ljung-Box"))
AIC=-2*x_fit_3$loglik + 2*3
AIC
BIC=-2*x_fit_3$loglik + 3*log(length(x))
BIC

         模型拟合信息及模型显著性检验结果如下:

模型拟合信息:

Call:
arima(x = x, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 0), period = 12), 
    method = "CSS")

Coefficients:
               ar1     ma1
        -0.6313  0.4870
s.e.   0.1654  0.1838

sigma^2 estimated as 12150:  part log likelihood = -2417.99

    Box-Ljung test

data:  x_fit_3$residuals
X-squared = 12.025, df = 6, p-value = 0.0614


    Box-Ljung test

data:  x_fit_3$residuals
X-squared = 110.77, df = 12, p-value < 2.2e-16

AIC值:

[1] 4841.976

BIC值:

[1] 4854.01

        从结果可以看到,该模型(ARIMA(1,(1,12),1)模型)延迟6阶的模型显著性检验p值为 0.0614,其延迟12阶的模型显著性检验p值远小于0.001的显著性水平\alpha,只有延迟6阶的模型显著性检验p值大于0.05的显著性水平\alpha,同样的情况,我也认为这一模型是无效的,其AIC值与BIC值分别为 4841.976,4854.01。 

        基于AIC准则和SBC(BIC)准则,拟合的三个模型中,ARIMA((1,2,10,12),(1,12),(1,2,10,12))模型的AIC值与BIC值最小,说明如果三个模型都通过了模型的显著性检验,那么ARIMA((1,2,10,12),(1,12),(1,2,10,12))模型是相对最优模型,当然,也只有该模型(ARIMA(1,(1,12),1))模型)没有通过了模型的显著性检验(有效性检验),说明上述拟合的三个模型中,除ARIMA(1,(1,12),1)模型外,剩余两个模型均有效。

        综述,上述拟合模型,除了疏系数模型外,均未通过模型的显著性检验,拟合结果不太理想,也说明简单的加法模型并不适合这个序列。考虑到该序列既具有短期自相关性又具有季节效应,而且短期相关性和季节效应使用加法模型无法充分、有效提取,可以认为该序列的季节效应和短期相关性之间具有复杂的关联性。这时呢,我们假定短期相关性和季节效应之间具有乘积关系,在这一假定下尝试用乘法模型来拟合序列的发展。

        乘法模型的构造原理如下:
        当序列具有短期相关性时,通常可以使用低阶ARMA(p,q)模型提取。注:短期相关性是指一个周期内。
        当序列具有季节效应,季节效应本身还具有相关性时,季节相关性可以使用以周期步长(以周期为步长)为单位的ARMA\left ( P,Q \right )_{S}模型提取。
        由于短期相关性和季节效应之间具有乘积关系,所以拟合模型实际上为ARMA(p,q)和ARMA\left ( P,Q \right )_{S}的乘积。综合前面的d阶趋势差分和D阶以周期S为步长的季节差分运算,对原观察值序列拟合的乘法模型的完整结构如下:

                                                    \bigtriangledown^{d} \bigtriangledown ^{D}_{S}x_{t}= \frac{\Theta\left ( B \right ) \Theta _{S}\left ( B \right )}{\Phi \left ( B \right )\Phi _{S}\left ( B \right )}\varepsilon _{t}

 其中,\Theta \left ( B \right )= 1-\theta_{1}B-\cdots - \theta_{q} B^{q};

            \Theta_{S} \left ( B \right )= 1-\theta_{1}B^{S}-\cdots - \theta_{Q} B^{QS};

            \Phi \left ( B \right )= 1-\phi _{1}B-\cdots - \phi _{p} B^{p};

            \Phi _{S}\left ( B \right )= 1-\phi _{1}B^{S}-\cdots - \phi _{P} B^{PS}。                                                                          该乘法模型简记为ARIMA\left ( p,d,q \right )\times \left ( P,D,Q \right )_{S}

        现在让我们回到对差分后的序列进行模型拟合的阶段,首先考虑1阶12步差分之后序列12阶以内的自相关系数和偏自相关系数的特征,以确定短期相关模型。在前面的分析中,我们已经确定12阶以内的自相关系数和偏自相关系数均不截尾,而ARMA(p,q)模型的阶数难以确定,所以尝试用ARMA(1,1)模型去拟合差分后的序列,去提取它的短期自相关信息。                                                      接下来考虑季节自相关特征,这时要考察延迟12阶、24阶等以周期长度为单位的自相关系数和偏自相关系数的特征。差分后的序列的自相关图显示延迟12阶自相关系数显著非零,但是延迟24阶自相关系数落入2倍标准差范围内。而偏自相关图显示延迟12阶和延迟24阶的偏自相关系数都显著非零。所以我们可以认为季节自相关特征是自相关系数截尾,偏自相关系数拖尾,这时用以12步为周期的ARMA\left ( 1,1 \right )_{12}模型提取差分后序列的季节自相关信息。
        综合前面的差分信息,我们要拟合的乘法模型为ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}。模型结构为\bigtriangledown\bigtriangledown _{12}x_{t}= \frac{1-\theta _{1}B}{1-\phi _{1}B}\left ( 1-\theta _{12}B^{12} \right )\varepsilon _{t}

        拟合乘法模型ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型:

#模型拟合-乘积(法)季节模型
x_fit<-arima(x,order = c(1,1,1),seasonal=list(order=c(0,1,1),period=12),method = "CSS")#实际拟合模型
#include.mean = T:拟合常数项
#include.mean = F:不拟合常数项
#transform.pars:参数估计是否由系统完成
#transform.pars = T:系统根据order设置的模型阶数自动完成参数估计
#transform.pars = F:需要拟合疏系数模型,需要认为干预
#fixed:对疏系数模型指定疏系数的位置
#seasonal:指定季节模型的阶数与季节周期,命令格式为seasonal=list(c(p,d,q),period=周期)
#乘法模型中p,q不全为零,加法模型中p=0,q=0
x_fit
AIC=-2*x_fit$loglik + 2*4
AIC
BIC=-2*x_fit$loglik + 4*log(length(x))
BIC

        模型拟合的信息及其AIC与BIC值如下:

模型拟合信息:

Call:
arima(x = x, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12), 
    method = "CSS")

Coefficients:
               ar1      ma1      sma1
        -0.6883  0.5626  -0.7884
s.e.   0.1572  0.1857    0.0311

    Box-Ljung test

data:  x_fit$residuals
X-squared = 4.21, df = 6, p-value = 0.6483


    Box-Ljung test

data:  x_fit$residuals
X-squared = 10.03, df = 12, p-value = 0.6133

AIC值:
[1] 4656.524

BIC值:
[1] 4672.569

         从结果可以看到,该模型的延迟6阶、12阶的模型显著性检验p值均大于0.05的显著性水平\alpha, 因此在0.05的显著性水平\alpha下,我们没有充分理由接受模型显著性检验的原假设;从而我们选择接受备择假设,认为拟合的模型是显著的(有效的)。

         其AIC与BIC值分别是4656.524,4672.569;基于AIC准则和SBC(BIC)准则 ,ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型与上述拟合的模型相比,ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型的AIC和BIC值都是最小的,说明该乘法模型模型是相对最优模型。

         我采用条件最小二乘估计方法估计模型参数,确定ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型的口径为:\bigtriangledown \bigtriangledown _{12}x_{t}=\frac{1+0.5626B}{1+0.6883B}\left ( 1-0.7884B^{12} \right )\varepsilon _{t}Var\left ( \varepsilon _{t} \right )=7559

       接下来,我们对该模型(ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型)的参数进行参数显著性检验:

#参数显著性检验,即检验参数是否显著非零,拒绝原假设则显著非零
qt(0.975,405)
#ar1系数检验
t1<-0.6883/0.1572
t1
pt(t1,df=405,lower.tail = T)

#ma1检验
t2<-0.5626/0.1857
t2
pt(t2,df=405,lower.tail = F)

#sma1检验
t3<-0.7884/0.0311
t3
pt(t3,df=405,lower.tail = T)

        检验结果如下:

> qt(0.975,405)
[1] 1.965839
> #ar1系数检验
> t1<-0.6883/0.1572
> t1
[1] 4.378499
> pt(t1,df=405,lower.tail = T)
[1] 0.9999924

> #ma1检验
> t2<-0.5626/0.1857
> t2
[1] 3.029618
> pt(t2,df=405,lower.tail = F)
[1] 0.001302783

> #sma1检验
> t3<-0.7884/0.0311
> t3
[1] 25.35048
> pt(t3,df=405,lower.tail = T)
[1] 1

       参数显著性检验结果显示,参数的检验统计量的值分别为4.378499、3.029618、25.35048,都大于自由度为405的t分布的0.975分位点,即没有充分理由接受原假设,从而我们认为参数显著非零,即模型无需优化。参数\phi _{1}\theta _{12}此时实际p值远小于0.0001,而并非结果显示的1。

        接下来,用最后拟合的季节乘法模型ARIMA\left ( 1,1,1 \right )\times \left ( 0,1,1 \right )_{12}模型对序列进行一年预测:

#预测
library(forecast)
x.fore<-forecast(x_fit,h=12,level = c(95))#h为预测期数,level为置信度,预测一年
x.fore
plot(x.fore)


#星号是观察值序列,蓝色是两倍95%置信线,实线是拟合值序列
L1<-x.fore$fitted-1.96*sqrt(x_fit$sigma2)
U1<-x.fore$fitted+1.96*sqrt(x_fit$sigma2)
L2<-ts(x.fore$lower[,1],start=1982)#start=预测期数起始年限
U2<-ts(x.fore$upper[,1],start=1982)#start=预测期数起始年限
c1<-min(x,L1,L2)
c2<-max(x,L2,U2)
plot(x,
     type="p",
     pch=8,
     xlim=c(1948,1982),ylim=c(c1,c2))#xlim=c(数据序列起始时间,预测期数终止时间)
lines(x.fore$fitted,col=2,lwd=2)#此时拟合值与观测值同图
lines(x.fore$mean,col=2,lwd=2)
lines(L1,col=4,lty=2)
lines(U1,col=4,lty=2)
lines(L1,col=4,lty=2)
lines(L2,col=4,lty=2)
lines(U2,col=4,lty=2)

        预测值及其95%预测区间如下: 

             Point Forecast    Lo 95    Hi 95
Jan 1982       3305.291 3134.883 3475.699
Feb 1982       3266.985 3040.634 3493.336
Mar 1982       3144.601 2865.240 3423.961
Apr 1982       3048.538 2729.746 3367.331
May 1982       3053.233 2696.287 3410.179
Jun 1982       3238.443 2848.994 3627.892
Jul 1982       3309.311 2888.629 3729.992
Aug 1982       3414.588 2965.638 3863.538
Sep 1982       3409.540 2933.480 3885.599
Oct 1982       3335.056 2833.689 3836.423
Nov 1982       3297.522 2771.842 3823.202
Dec 1982       3173.601 2624.831 3722.371

         预测图如下:

        详细预测图如下: 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花店不等花开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值