题目:
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
思路:
初始暴力复杂度,且可能有重复。
要去重,可以将数组进行排序,使三元组(a,b,c)满足a<=b<=c,即不重复地在同一个位置取相同的数。但复杂度没变。
移项可得-a=b+c,也就是说当三元组中的一个数固定时,另外两个数的一个增大,另一个肯定要减小,因此第二和第三重循环是并列关系,这样使用双指针将第二三重循环减为一重。
实现上有许多小细节,比如三元组的第二个数不需要一定和其在数组中的前一个数不同,因为有a和b相等的情况,而且当不满足这个条件时应该移动b,再进行判断,而不是移动a。
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
for(int i = 0; i < nums.length; i++) {
if(i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int l = i + 1;
int r = nums.length - 1;
while(l < r) {
if(l > i + 1 && nums[l] == nums[l - 1]) {
l++;
continue;
}
if(nums[i] + nums[l] + nums[r] > 0) {
r--;
} else if(nums[i] + nums[l] + nums[r] < 0) {
l++;
} else {
ans.add(Arrays.asList(nums[i], nums[l], nums[r]));
l++;
r--;
}
}
}
return ans;
}
}