题目
Given the root of a binary tree, return the length of the diameter of the tree.
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
The length of a path between two nodes is represented by the number of edges between them.
Example 1:
Input: root = [1,2,3,4,5]
Output: 3
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
Example 2:
Input: root = [1,2]
Output: 1
Constraints:
The number of nodes in the tree is in the range [1, 104].
-100 <= Node.val <= 100
解法
方法一:深度优先搜索
首先我们知道一条路径的长度为该路径经过的节点数减一,所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一。
而任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到。
如图我们可以知道路径 [9, 4, 2, 5, 7, 8] 可以被看作以 2 为起点,从其左儿子向下遍历的路径 [2, 4, 9] 和从其右儿子向下遍历的路径 [2, 5, 7, 8] 拼接得到。
假设我们知道对于该节点的左儿子向下遍历经过最多的节点数 LL (即以左儿子为根的子树的深度) 和其右儿子向下遍历经过最多的节点数 R (即以右儿子为根的子树的深度),那么以该节点为起点的路径经过节点数的最大值即为 L+R+1 。
我们记节点 node 为起点的路径经过节点数的最大值为node,那么二叉树的直径就是所有节点node的最大值减一。
最后的算法流程为:我们定义一个递归函数 depth(node) 计算node,函数返回该节点为根的子树的深度。
先递归调用左儿子和右儿子求得它们为根的子树的深度 LL 和 RR ,则该节点为根的子树的深度即为max(L,R)+1
该节点的 d node值为
L+R+1
递归搜索每个节点并设一个全局变量 ans 记录d node的最大值,最后返回 ans-1 即为树的直径。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int maxd = 0;
public int diameterOfBinaryTree(TreeNode root) {
getDepth(root);
return maxd;
}
public int getDepth(TreeNode node){
if(node == null){
return 0;
}
int L,R;
L = getDepth(node.left);
R = getDepth(node.right);
maxd = Math.max(L+R,maxd);
return Math.max(L,R) + 1;
}
}
复杂杂度分析
时间复杂度:O(N),其中 NN 为二叉树的节点数,即遍历一棵二叉树的时间复杂度,每个结点只被访问一次。
空间复杂度:O(Height),其中 Height 为二叉树的高度。由于递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,而递归的深度显然为二叉树的高度,并且每次递归调用的函数里又只用了常数个变量,所以所需空间复杂度为 O(Height)。
来源
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/diameter-of-binary-tree/solution/er-cha-shu-de-zhi-jing-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。