【学会动态规划】按摩师(11)

本文介绍了学习动态规划的步骤,包括题目解析、算法原理如状态表示和状态转移方程,以及代码编写示例。通过分析按摩师问题,解释了如何利用动态规划解决最长预约时长的问题。最后,提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

动态规划怎么学?

1. 题目解析

2. 算法原理

1. 状态表示

2. 状态转移方程

3. 初始化

4. 填表顺序

5. 返回值

3. 代码编写

写在最后:


动态规划怎么学?

学习一个算法没有捷径,更何况是学习动态规划,

跟我一起刷动态规划算法题,一起学会动态规划!

1. 题目解析

题目链接: 面试题 17.16. 按摩师 - 力扣(Leetcode)

题目不难理解,就是不能选相邻的预约请求,。

最后算出最长的预约时长。

2. 算法原理

1. 状态表示

dp[ i ] 表示的是到这个位置的时候的最长预约时长,

但是实际上这里有两种情况,

1. 到了 i 位置选 i 此时的最长预约时长:我们称之为 f [ i ]

2. 到了 i 位置但是不选 i 此时的最长预约时长:我们称之为 g [ i ]

2. 状态转移方程

那这两种情况的状态转移方程是什么呢?

f [ i ] = g[ i - 1 ] + nums[ i ]

g[ i ] = max( f [ i - 1 ],g[ i - 1 ] )

3. 初始化

f [ 0 ] = nums[ 0 ] ,g [ 0 ] = 0

4. 填表顺序

从左往右。

5. 返回值

max( f [ n - 1 ],g[ n - 1 ] ),取最后一个位置的两种情况的最大值

3. 代码编写

class Solution {
public:
    int massage(vector<int>& nums) {
        int size = nums.size();
        if(size == 0) return 0;
        vector<int> f(size);
        auto g = f;
        f[0] = nums[0];
        for(int i = 1; i < size; i++) {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[size - 1], g[size - 1]);
    }
};

写在最后:

以上就是本篇文章的内容了,感谢你的阅读。

如果感到有所收获的话可以给博主点一个哦。

如果文章内容有遗漏或者错误的地方欢迎私信博主或者在评论区指出~

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戊子仲秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值