题目描述
(中等)有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
示例:
输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2
解题思路
并查集,解图的连通性问题的利器!
什么是并查集,从数据结构上讲,它是物理上是线性表,即数组;它逻辑结构上又是森林(一组树),也就是说用一个数组表示了整片森林。
并查集主要要求实现一下功能:
class UnionFindeed{
public:
//parent数组,存储各结点的父节点
int parent[];
//将 p 和 q 连接
void union(int p, int q);
//判断 p 和 q 是否连通
boolean isConnected(int p, int q);
//返回图中有多少个连通分量
int count();
//返回当前节点的根节点
int find(int x);
}
如何表示一个连通分量各节点之间的连通性呢?
- 利用
parent[]
数组,存储各结点的父节点(一个连通分量被视为一个树); parent[i]
表示第i
个结点的父结点;- 如果
p
和q
连通,则其拥有相同的根节点; - 根节点有
parent[i] = i
,即自己指向自己。
并(Union),怎么连接呢?只需要将一结点的根节点作为另一结点的根节点的父节点即可。之所以要找两个结点的根节点,是因为根节点的特性使其不存在父节点,在合并两个连通分量时不会产生父节点冲突的问题。
//伪码
void union(int p, int q){
int root_p = find(p);
int root_q = find(q);
if(root_p != root_q){
//随意!将一根节点置为另一根节点的父节点
parent[root_p] = root_q;
}
}
查(Find),连接操作相当依赖查操作,实现起来也很简单,不断向上查找父节点,直到某一结点的父节点为其本身,该结点即为根节点。
int find(int node){
while(parent[node] != node) node = parent[node];
return node;
}
判断连接状态(isConnected),只需判断两节点是否有相同的根节点。
bool isConnnected(int p, int q){
return find(p) == find(q);
}
统计连通分量个数(count),维护成员属性count
,初始值为结点个数,有且仅有成功执行union()
后count
才可能减少。
int count;
void union(int p, int q){
int root_p = find(p);
int root_q = find(q);
if(root_p != root_q){
//成功合并,连通分量减 1
count--;
parent[root_p] = root_q;
}
}
int count(){
return this->count;
}
优化并查集
实现上述功能的并查集尚存在可优化的空间,其中最影响算法性能的是find()
,其余操作的时间复杂度可视为常数级,而find()
的时间复杂度取决于树结构的深度。对于有 n 个结点 1 个连通分量的并查集来说,最坏的时间复杂度为 O(n),最好的时间复杂度为 O(1)。
- 最坏情况:所有结点都没有兄弟结点;
- 最好情况:n个结点的 n - 1 叉树,即除了根结点,所有结点无子结点。
所以,可以明确我们的优化方向,即尽可能的时树扁平化,减小树的高度。
常见的优化方式有二:
- 平衡性优化:当我们每次连接两个节点的时候,不希望出现头重脚轻的情况,而希望到达一种平衡的状态;
- 路径压缩:使树的高度保持常数。
由于路径压缩比平衡性优化更常用,下面简单介绍路径压缩。
路径压缩
直接上代码:
int find(int node){
while(node != parent[node]){
//路径压缩
parent[node] = find(parent[node]);
}
return parent[node];
}
递归实现,一次递归使递归结点的上的所有结点的parent[]
的值为根节点。
路径压缩逻辑:
- 递归到最深处,找到
node == parent[node]
的根结点; - 通过
return
将根结点作为递归结果上抛; - 在每一层里,将当前结点的
parent[]
值修改为根结点。
代码实现
回到题目中来,初始化连通分量个数为城市数量,后遍历邻接矩阵isConnected
将同一省份下的城市合并,连通分量个数相应减少。遍历完后返回最终连通分量个数,即省份数量。
class Solution {
//连通分量计数
int count;
//parent[]数组头指针
int* parent;
public:
//并查集
int findCircleNum(vector<vector<int>>& isConnected) {
int n = isConnected.size();
//初始化为城市数量
count = n;
int a[n];
//parent[]初始化,初始状态设为所有结点都为根结点,即 parent[i] = i;
parent = a;
for(int i = 0; i < n; i++){
parent[i] = i;
}
//由于邻接矩阵为对称矩阵,遍历时可以优化
for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j++){
if(isConnected[i][j]){
Union(i, j);
}
}
}
return count;
}
//路径压缩后的查Find
int find(int* parent, int key){
if(parent[key] != key){
parent[key] = find(parent, parent[key]);
}
return parent[key];
}
//与关键字union冲突,故方法名首字母大写。
void Union(int a, int b){
int root1 = find(parent, a);
int root2 = find(parent, b);
if(root1 != root2){
parent[root1] = root2;
count--;
}
}
};
运行结果: