<二分答案加验证||最小生成树>bzoj 1821 部落划分

去题面的传送门

Solution 1:

二分答案加验证
并查集维护分成的部落
小于答案的边必须分到同一个并查集里,最后并查集的数目如果小于k,那么答案偏小
这里有一个问题
二分时,如果把各个点之间的距离排一遍序,二分这个数组的话,会wa
原因是,举个栗子:
比如说各点的距离里面,有一段区间是:[11.2145,12.4000],如果直接二分这个区间,在验证到答案11.2145时,发现11.2145符合答案要求,于是去找更大的答案,这时会二分到12.40000甚至比它更大的。但是,题目要求精确到小数点后面两位数字,也就是说,如果11.2169(比11.2145大但是不超过11.2145的数字)是符合答案的,那就错过了这个答案。实际上这组数据的最后答案就是11.21,如果二分数组的话,答案是12.40.
所以对于这种浮点数的精度问题,还是精确一点好
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;

const int maxn=1000+10;
int n,k,cnt,tot1,tot2,tot;
double ans;
int fa[maxn],num[maxn];
double d[maxn<<1],dis[maxn][maxn];
struct hh
{
    int x,y;
}e[maxn];

int find(int x)
{
    if(fa[x]==x) return x;
    return fa[x]=find(fa[x]);
}
bool check(double x)
{
    tot=n;
    for(int i=1;i<=n;++i) fa[i]=i;
    for(int i=1;i<=n;++i)
      for(int j=i+1;j<=n;++j)
      {
          int f1=find(i),f2=find(j);
          if(dis[i][j]<=x)
          {
              if(f1!=f2) 
              {
                  tot--;
                  fa[f1]=f2;
              }
          }
      }
    if(tot<k) return false;
    return true;
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;++i) scanf("%d%d",&e[i].x,&e[i].y);

    for(int i=1;i<=n;++i)
      for(int j=i+1;j<=n;++j)
      {
          int x1=e[i].x,y1=e[i].y,x2=e[j].x,y2=e[j].y;
          dis[i][j]=dis[j][i]=(double)sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
      }
    double l=0,r=10100;
    while(r-l>0.0001)
    {
        double mid=(l+r)/2.0;
        if(check(mid)) l=mid;
        else r=mid;
    }
    if(check(r)) ans=r;
    else ans=l;
    printf("%.2lf",ans);
    return 0;
}

Solution 2:

最小生成树

懒得写了,上题解:

最小生成树——首先将任意两点间的距离处理出来。在一开始时,每个点各为一个集合,在不连边的情况下,那么答案一定是所有的边中最小的边。由于已经推出的贪心的思想,我们连接不在同一个集合内的两点就相当于删去这两个点所在集合内部的任意两点间的边。所以我们把这条最小的边连接,此时答案,又是所有剩余的边中最小的边,然后我们再进行连接(shan chu)……。那么显然——答案一定在最小生成树中。
所以我们可以建立一棵最小生成树,来保证每次连边都是不在同一个集合内的两点且长度为当前最小,直到连接了n-k+1条边。
为什么是n-k+1条??
n-k是为了保证能够建成k个集合(已知n-1条边是一棵树,若删去一条边–>n-2是两棵树……那么n-k就是k棵树啦)
+1的原因是为了保证当前求的这一条边是集合外的边,并不是连接的意思。
这样第n-k+1条边的长度就是答案啦

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值