题目描述
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个
城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分
为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价
格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息
之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路
为单向通行,双向箭头表示这条道路为双向通行。假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号
以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入输出格式
输入格式:
第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的
数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城
市的商品价格。
接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市y 之间的双向道路。
输出格式:
输出文件 trade.out 共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 0。
输入样例#1:
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出样例#1:
5
【数据范围】
输入数据保证 1 号城市可以到达 n 号城市。
对于 10%的数据,1≤n≤6。
对于 30%的数据,1≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市
水晶球价格≤100。
NOIP2009 提高组D1T3
思路:
跑一边正向spfa和反向spfa 求所有可以到达的点的最大值和最小值 做差即可
PS:建图过程用数组很可能会TLE / MLE
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 100010;
const int maxe = 500050;
int n,m,tot1,tot2,dis[maxn];
int fst1[maxn],fst2[maxn],minn[maxn],maxx[maxn];
bool vis1[maxn],vis2[maxn];
struct edge{
int to,next;
}es1[maxe],es2[maxe];
void build1(int ff,int tt)
{
es1[tot1].to = tt;
es1[tot1].next = fst1[ff];
fst1[ff] = tot1++;
}
void build2(int ff,int tt)
{
es2[tot2].to = tt;
es2[tot2].next = fst2[ff];
fst2[ff] = tot2 ++;
}
void spfa1()
{
queue<int>q;
q.push(1);
vis1[1] = 1;
minn[1] = dis[1];
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = fst1[u];i;i = es1[i].next)
{
int v = es1[i].to;
minn[v] = min(minn[u],dis[v]);
if(!vis1[v])
{
q.push(v);
vis1[v] = 1;
}
}
}
}
void spfa2()
{
queue<int>q;
q.push(n);
vis2[n] = 1;
maxx[n] = dis[n];
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = fst2[u];i;i = es2[i].next)
{
int v = es2[i].to;
maxx[v] = max(dis[v],maxx[u]);
if(!vis2[v])
{
q.push(v);
vis2[v] = 1;
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;i ++)
{
scanf("%d",&dis[i]);
vis1[i] = 0;
vis2[i] = 0;
fst1[i] = 0;
fst2[i] = 0;
minn[i] = 2147483647;
maxx[i] = 0;
}
for(int i = 1;i <= m;i ++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(z == 1)
{
build1(x,y);
build2(y,x);
}
else
{
build1(x,y);build1(y,x);
build2(x,y);build2(y,x);
}
}
spfa1();
spfa2();
int ans = 0;
for(int i = 1;i <= n;i ++)
ans = max(ans,maxx[i] - minn[i]);
printf("%d",ans);
return 0;
}