【洛谷P1073】最优贸易【spfa+链表+反图】

这篇博客讨论了一个关于C国贸易问题的算法解决方案,其中商人阿龙试图利用不同城市间商品价格差异赚取旅费。问题涉及单向和双向道路的路径规划,以及如何通过SPFA算法在原图和反图上寻找最短路径来确定最大利润。博客给出了输入输出格式及样例,并详细解释了分析和解决方案。
摘要由CSDN通过智能技术生成

题目描述

C国有 n个大城市和 m 条道路,每条道路连接这 n个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。

C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C国 n 个城市的标号从 1~ 1n,阿龙决定从1号城市出发,并最终在 n号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

假设C国有 5个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

在这里插入图片描述

假设 1~1n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在2号城市以3的价格买入水晶球,在3号城市以5的价格卖出水晶球,赚取的旅费数为2。

阿龙也可以选择如下一条线路 1->4->5->4->5,并在第1次到达5号城市时以1的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n个城市的水晶球价格,m条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。

接下来 m 行,每行有 3个正整数x,y,z每两个整数之间用一个空格隔开。如果 z=1,表示这条道路是城市 x到城市 y之间的单向道路;如果 z=2,表示这条道路为城市 x和城市 y之间的双向道路。

输出格式

一 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出0。

输入输出样例

输入 #1

5 5 
4 3 5 6 1 
1 2 1 
1 4 1 
2 3 2 
3 5 1 
4 5 2 

输出 #1

5

分析&说明:

S P F A SPFA SPFA
要用两张图:一张原图一张反图
而且要跑两遍 S P F A SPFA SPFA 分别算出贸易的最小值最大值,在最后求出 m a x ( max( max(最大值与最小值的差 ) ) ),就是最优的了

CODE:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,k,a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值