两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
Sample Input
1 2 3 4 5
Sample Output
4
题解:
题目要求两者跳的次数相同 要求两者落点坐标相同
首先无解的情况:
两者出生点不同 且跳跃能力相同
有解的情况:
设两只青蛙均跳了a步 根据该关系可得出方程:
am + x + k1 * L = an + y + k2 * L a为所求的答案
移项可得:
a * (m - n) + k * L = (y - x)
已知条件为m , n , x , y , L
设 a = x ; (m - n) = a ; k = y; L = b; (y - x) = c
则上述方程可转化为:
ax + by = c 的一个不定方程
对于ax + by = c 这样一个不定方程 如果存在整数解
则满足:gcd(a , b) % c = 0;
设gcd(a , b) = d ;
则有:ax1 + by1 = d;
等式两边同时乘 c / d
则有:ax1 * c / d + by1 * c / d = c;
所以< x1 * c / d , y1 * c / d>为不定方程的一组解
对于不定方程ax + by = c
若存在一组解为< x , y > 则< x - b / d, y + b / d >也为一组解
所以最小解即为(x1 * c / d) % b / d;
其中 x = a , b = L , c = (y - x) , d = gcd(a , b);
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll x,y,m,n,l;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
ll ans = exgcd(b,a%b,x,y);
ll t = x;
x = y;
y = t - a / b * y;
return ans;
}
int main()
{
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
if(x != y && n == m)
{
puts("Impossible");
return 0;
}
else
{
if(m < n) {swap(x,y);swap(m,n);}
ll a,k;
ll d = exgcd(m-n,l,a,k);
ll c = y - x;
if(c % d)
{
puts("Impossible");
return 0;
}
else
printf("%lld",((a*c/d)%(l/d)+(l/d))%(l/d));
}
return 0;
}