51nod 1192 莫比乌斯反演

很基础的反演题,练练手。

题目要求:
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = p ] \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=p] i=1nj=1m[gcd(i,j)=p]
枚举p:
∑ k = 1 p r i m e s ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = p r i m e [ k ] ] \sum_{k=1}^{primes}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=prime[k]] k=1primesi=1nj=1m[gcd(i,j)=prime[k]]
然后把后面单独拉出来
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d] i=1nj=1m[gcd(i,j)=d]
化简:(套路)
∑ i = 1 n / d μ [ i ] ∗ n i ∗ d ∗ m i ∗ d \sum_{i=1}^{n/d}\mu [i]*\frac{n}{i*d}*\frac{m}{i*d} i=1n/dμ[i]idnidm
带回去:
∑ k = 1 p r i m e s ∑ i = 1 n / d μ [ i ] ∗ n i ∗ p r i m e [ k ] ∗ m i ∗ p r i m e [ k ] \sum_{k=1}^{primes}\sum_{i=1}^{n/d}\mu [i]*\frac{n}{i*prime[k]}*\frac{m}{i*prime[k]} k=1primesi=1n/dμ[i]iprime[k]niprime[k]m
一看看出来id套路T=id,化简得:
∑ T = 1 n ∗ n T ∗ m T ∗ ∑ d ∣ T μ [ T / d ] \sum_{T=1}^{n}*\frac{n}{T}*\frac{m}{T} * \sum_{d|T}\mu [T/d] T=1nTnTmdTμ[T/d]

g ( T ) = ∑ d ∣ T μ [ T / d ] g(T)=\sum_{d|T}\mu [T/d] g(T)=dTμ[T/d]
原式为:
∑ T = 1 n ∗ n T ∗ m T ∗ g ( T ) \sum_{T=1}^{n}*\frac{n}{T}*\frac{m}{T} * g(T) T=1nTnTmg(T)
对于这个式子,很显然n/T
m/T可以整除分块。这样多次查询+预处理的复杂度是
O ( T ∗ n + n ∗ l n ( n ) ) O(T*\sqrt n + n*ln(n)) O(Tn +nln(n))
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<ctime>
#define up(i,x,y) for(int i = x;i <= y;i ++)
#define down(i,x,y) for(int i = x;i >= y;i --)
#define mem(a,b) memset((a),(b),sizeof(a))
#define mod(x) ((x)%MOD)
#define lson p<<1
#define rson p<<1|1
using namespace std;
typedef long long ll;
const int SIZE = 5000010;
const int INF = 2147483640;
const double eps = 1e-8;

inline void RD(int &x)
{
    x = 0;  char c; c = getchar();
    bool flag = 0;
    if(c == '-')    flag = 1;
    while(c < '0' || c > '9')   {if(c == '-')   {flag = 1;} c = getchar();}
    while(c >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0',c = getchar();
}

int primes,prime[SIZE],mu[SIZE];
bool vis[SIZE];
int g[SIZE];

void Init()
{  
    mu[1]=1;
    primes=0;
    for (ll i=2;i<=5000000;i++)
    {  
        if (!vis[i])//素数
        {  
            prime[primes++]=i;
            mu[i]=-1; 
        }  
        for (ll j=0;j<primes && i*prime[j]<=5000000;j++)
        {  
            vis[i*prime[j]]=1;  
            if(i%prime[j])//i pj互素
            {
                mu[i*prime[j]]=-mu[i];
            }
            else
            {
                mu[i*prime[j]]=0;
                break;
            }  
        }  
    }
    for(int i = 0;i < primes;i ++)
    {
    //	printf("prime:%lld\n",prime[i]);
    	for(int j = prime[i];j <= 5000000;j += prime[i])
    	{
    		g[j] += mu[j/prime[i]];
    	}
    }
    for(int i = 1;i <= 5000000;i ++)	g[i] += g[i-1];
}

void solve(int a,int b)
{
	if(a > b)	swap(a,b);
	int last;
	ll ans = 0;
	for(int i = 1;i <= a;i = last+1)
	{
		last = min(a/(a/i),b/(b/i));
		ans += (ll)(a/i)*(ll)(b/i)*(ll)(g[last]-g[i-1]);
	}
	printf("%lld\n",ans);
}

int main(int argc, char const *argv[])
{
	Init();
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		solve(a,b);
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值