给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K
计算经过根的路径,既离根的距离之和小于K的点,然后递归处理不经过根的路径。这样会有一些重复,两点与根的距离之和小于K,但是路径不经过根,需要减掉。
#include<iostream>
#include<cstdio>
#include<algorithm>
#define maxn 80005
using namespace std;
struct E{
int to,nxt,d;
}b[100005];
int fst[maxn],tot=1;
void insert(int f,int t,int d)
{
b[++tot]=(E){t,fst[f],d};fst[f]=tot;
b[++tot]=(E){f,fst[t],d};fst[t]=tot;
}
int size[maxn],mx[maxn];
bool vis[maxn];
int dis[maxn];
int root,sum,K,ans,top;
int a[maxn];
void dfs(int x,int f)
{
size[x]=1;mx[x]=0;
for(int i=fst[x];i;i=b[i].nxt)
{
int v=b[i].to;
if(v!=f&&!vis[v])
{
dfs(v,x);
size[x]+=size[v];
mx[x]=max(mx[x],size[v]);
}
}
mx[x]=max(mx[x],sum-size[x]);
if(mx[x]<mx[root]) root=x;
}
void get_dis(int x,int f)
{
a[++top]=dis[x];
for(int i=fst[x];i;i=b[i].nxt)
{
int v=b[i].to;
if(v!=f&&!vis[v])
{
dis[v]=dis[x]+b[i].d;
get_dis(v,x);
}
}
}
int cal(int x,int now)
{
dis[x]=now;top=0;
get_dis(x,0);
sort(a+1,a+top+1);
int ans=0,l=1,r=top;
while(l<r)
if(a[l]+a[r]<=K)
ans+=r-l,l++;
else r--;
return ans;
}
void solve(int x)
{
ans+=cal(x,0);
vis[x]=1;
for(int i=fst[x];i;i=b[i].nxt)
{
int v=b[i].to;
if(!vis[v])
{
ans-=cal(v,b[i].d);
sum=size[v];
root=0;dfs(v,0);
solve(root);
}
}
}
int main()
{
mx[0]=maxn;
int n;
scanf("%d",&n);
int u,v,d;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&d);
insert(u,v,d);
}
scanf("%d",&K);
sum=n; root=0;
dfs(1,0);
solve(root);
cout<<ans;
return 0;
}