题目描述 Description
在某个遥远的国家里,有n个城市。编号为1,2,3,……,n。这个国家的政府修建了m条双向的公路。每条公路连接着两个城市。沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油。
开车每经过一个城市,都会被收取一定的费用(包括起点和终点城市)。所有的收费站都在城市中,在城市间的公路上没有任何的收费站。
小红现在要开车从城市u到城市v(1<=u,v<=n)。她的车最多可以装下s升的汽油。在出发的时候,车的油箱是满的,并且她在路上不想加油。
在路上,每经过一个城市,她要交一定的费用。如果她某次交的费用比较多,她的心情就会变得很糟。所以她想知道,在她能到达目的地的前提下,她交的费用中最多的一次最少是多少。这个问题对于她来说太难了,于是她找到了聪明的你,你能帮帮她吗?
输入描述 Input Description
第一行5个正整数,n,m,u,v,s。分别表示有n个城市,m条公路,从城市u到城市v,车的油箱的容量为s升。接下来有n行,每行1个正整数,fi。表示经过城市i,需要交费fi元。
再接下来有m行,每行3个正整数,ai,bi,ci(1<=ai,bi<=n)。表示城市ai和城市bi之间有一条公路,如果从城市ai到城市bi,或者从城市bi到城市ai,需要用ci升汽油。
输出描述 Output Description
仅一个整数,表示小红交费最多的一次的最小值。如果她无法到达城市v,输出-1。
样例输入 Sample Input 【输入样例1】
4 4 2 3 8
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3
【输入样例2】
4 4 2 3 3
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3
样例输出 Sample Output 【输出样例1】
8
【输出样例2】
-1
数据范围及提示 Data Size & Hint
对于60%的数据,满足n<=200,m<=10000,s<=200对于100%的数据,满足n<=10000,m<=50000,s<=1000000000
对于100%的数据,满足ci<=1000000000,fi<=1000000000,可能有两条边连接着相同的城市。
二分k,对于大于k的点我们就选择不走,直到找到答案。一定要开双端队列!!!特别鸣谢小兔子学长(Loi_xczhw)的帮忙,在此表示感谢!!
在二分的时候,我们应该二分,存一下每个点的费用,sort一下,二分数组下标,这样可以次数更少的情况下跑过spfa
代码如下:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<queue>
typedef long long ll;
using namespace std;
const ll maxn=200005;
struct dqs
{
ll f,t,c;
}hh[maxn];
ll tot=0,n,m,u,v,s,l=1e12,r=-1;
ll first[maxn],next[maxn];
void build(ll f,ll t,ll c)
{
hh[++tot]=(dqs){f,t,c};
next[tot]=first[f];
first[f]=tot;
}
ll d[maxn],f[maxn];
bool used[maxn];
deque<ll>q;
void spfa(ll s,ll mid)
{
d[s]=0;
q.push_back(s);
used[s]=1;
while(!q.empty())
{
ll x=q.front();
q.pop_front();
used[x] = 0;
for(ll i=first[x];i;i=next[i])
{
ll u=hh[i].t;
if(f[u]<=mid)
{
if(d[u]>d[x]+hh[i].c)
{
d[u]=d[x]+hh[i].c;
if(!used[u])
{
if(q.empty() || d[u] > d[q.front()])
q.push_back(u);
else
q.push_front(u);
used[u]=1;
}
}
}
}
}
}
bool check(ll mid)
{
for(ll i=1;i<=n;i++)
{
d[i]=1e12;
used[i]=0;
}
while(!q.empty())
q.pop_front();
spfa(u,mid);
if(d[v]>s)
return false;
else
return true;
}
int main()
{
scanf("%lld%lld%lld%lld%lld",&n,&m,&u,&v,&s);
for(ll i=1;i<=n;i++)
{
scanf("%lld",&f[i]);
l=min(l,f[i]);
r=max(r,f[i]);
}
for(ll i=1;i<=m;i++)
{
ll f,t,c;
scanf("%lld%lld%lld",&f,&t,&c);
build(f,t,c);
build(t,f,c);
}
ll mxnn=max(f[u],f[v]);
for(ll i=1;i<=n;i++)
d[i]=1e12;
spfa(u,r);
if(d[v]>s)
{
printf("-1\n");
}
else
{
while(r-l>1)
{
ll mid=(r+l)>>1;
if(check(mid))
r=mid;
else
l=mid;
}
printf("%lld\n",max(mxnn,r));
}
return 0;
}