描述
有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式。如: n=5,5个数分别为1,2,3,4,5,t=5;
那么可能的组合有5=1+4和5=2+3和5=5三种组合方式。输入
输入的第一行是两个正整数n和t,用空格隔开,其中1<=n<=20,表示正整数的个数,t为要求的和(1<=t<=1000)
接下来的一行是n个正整数,用空格隔开。输出
和为t的不同的组合方式的数目。样例输入
5 5
1 2 3 4 5样例输出
3
子集枚举23333
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=500005;
int shu[maxn];
int tot=0,sum=0,n,t;
void dfs(int x)
{
if(sum==t)
{
tot++;
return;
}
if(x>n)
return;
sum+=shu[x];
dfs(x+1);
sum-=shu[x];
dfs(x+1);
}
int main()
{
scanf("%d%d",&n,&t);
for(int i=1;i<=n;i++)
scanf("%d",&shu[i]);
dfs(1);
printf("%d\n",tot);
return 0;
}
还有一种dp解法(引自神犇学长Loi_imcy的博客):
dp可以设f[ i ] 为和为 i 的方案数 , f[ j ] = Σf[ j - num[ i ] ].
代码实现:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1210];
int num[1210];
int main()
{
int n,t;
scanf("%d%d",&n,&t);
f[0] = 1;
for(int i = 1 ; i <= n ; i ++)
scanf("%d",&num[i]);
for(int i = 1 ; i <= n ; i ++)
for(int j = t ; j >= num[i] ; j --)
f[j] += f[j-num[i]];
printf("%d\n",f[t]);
return 0;
}