OpenJudge noi2985数字组合

描述

有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式。如: n=5,5个数分别为1,2,3,4,5,t=5;
那么可能的组合有5=1+4和5=2+3和5=5三种组合方式。

输入

输入的第一行是两个正整数n和t,用空格隔开,其中1<=n<=20,表示正整数的个数,t为要求的和(1<=t<=1000)
接下来的一行是n个正整数,用空格隔开。

输出
和为t的不同的组合方式的数目。

样例输入
5 5
1 2 3 4 5

样例输出
3

子集枚举23333

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=500005;
int shu[maxn];
int tot=0,sum=0,n,t;
void dfs(int x)
{
    if(sum==t)
    {
        tot++;
        return;
    }
    if(x>n)
        return;
    sum+=shu[x];
    dfs(x+1);
    sum-=shu[x];
    dfs(x+1);
}
int main()
{
    scanf("%d%d",&n,&t);
    for(int i=1;i<=n;i++)
        scanf("%d",&shu[i]);
    dfs(1);
    printf("%d\n",tot);
    return 0;
}

还有一种dp解法(引自神犇学长Loi_imcy的博客):
dp可以设f[ i ] 为和为 i 的方案数 , f[ j ] = Σf[ j - num[ i ] ].

代码实现:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1210];
int num[1210];
int main()
{
    int n,t;
    scanf("%d%d",&n,&t);
    f[0] = 1;
    for(int i = 1 ; i <= n ; i ++)
        scanf("%d",&num[i]);
    for(int i = 1 ; i <= n ; i ++)
        for(int j = t ; j >= num[i] ; j --)
            f[j] += f[j-num[i]];
    printf("%d\n",f[t]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值