本着快noip了,要复习一下基础算法的原则,去找了到分治的题目……结果……这题真是……好吧确实算是分治……
这题灰常巧妙,n^2贼好想,但是怎么压成nlogn就挺有难度的……不看题解真心想不到居然还可以这么玩……
因为他说求平均数大于m的所有区间,也就是说,如果把每个数都减去m,其区间和大于0的就是我们要找的区间之一,所以先预处理一下,把每一个数先减去m,求前缀和,如果s[r]-s[l-1]大于0就ans++,但是这样明显n^2,所以我们需要更高效的找满足i<=j&&s[j]-s[i-1]>0,这个性质是不是很像逆序对呢,所以可以归并排序nlogn找(我第一次看到这种想法也是懵逼了,城里人真会玩qwq)
记得排序从0开始,不然会错
#include<iostream>
#include<cstdio>
using namespace std;
long long ans;
int n,m,qwq[100010],su[100010],cun[100010];
inline void m_st(int l,int r)
{
if(l>=r)
return;
int mid=l+r>>1,t1=l,t2=mid+1,t3=l-1;
m_st(l,mid),m_st(mid+1,r);
while(t1<=mid&&t2<=r)
{
if(su[t1]<su[t2])
cun[++t3]=su[t1++],ans+=r-t2+1;
else
cun[++t3]=su[t2++];
}
while(t1<=mid)
cun[++t3]=su[t1++];
while(t2<=r)
cun[++t3]=su[t2++];
for(int i=l;i<=r;i++)
su[i]=cun[i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&qwq[i]),qwq[i]-=m,su[i]=su[i-1]+qwq[i];
m_st(0,n);
cout<<ans;
}