1003: [ZJOI2006]物流运输

Description

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

Input

第一行是四个整数n(1<=n<=100)m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

Output

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32

图上的dp(不过只有20个点(笑),因为每天走的过程中是不会变更路线的整个1-n天可以看成1-i天走一条路,i-j天走一条路,j-k天走一条路……我们处理出 dis[i][j] 为第 i 天到第 j 天一直走一条路的花费,f[i] 为前 i 天的花费,由此得 f[i] = max(f[i] , f[j] + dis[j+1][i]+k);,注意的地方,j 要从 0 开始枚举,相当于从一开始一直走一条路;因为一开始走是不需要消耗k的,而在方程里一并当做了修改路线计算,所以答案要减去 k 。
代码如下

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const int size = 200010;
int head[size],next[size];
ll dist[size];
ll dis[450][450];
ll f[20010];
struct gtnd
{
    ll f,t,d;
}l[size],untr[size];
int tot = 1;
void build(int f,int t,int d)
{
    l[tot].t = t;
    l[tot].d = d;
    next[tot] = head[f];
    head[f] = tot ++;
}
ll n,m,kk,e,d;
queue < int > q;
bool use[450];
bool vis[450];
bool usef[2000][450];
void spfa(int s)
{
    for(int i = 1 ; i <= m ; i ++)
        dist[i] = 2147483641ll;
    dist[s] = 0;
    use[s] = 1;
    q.push(s);
    while(!q.empty())
    {
        int f = q.front();
        q.pop();
        use[f] = 0;
        for(int i = head[f] ; i ; i = next[i])
        {
            int t = l[i].t;
            if(!vis[t] && dist[t] > dist[f] + l[i].d)
            {
                dist[t] = dist[f] + l[i].d;
                if(!use[t])
                {
                    use[t] = 1;
                    q.push(t);
                }
            }
        }
    }
}
int main()
{
    scanf("%lld%lld%lld%lld",&n,&m,&kk,&e);
    for(int i = 1 ; i <= e ; i ++)
    {
        ll f,t,d;
        scanf("%lld%lld%lld",&f,&t,&d);
        build(f,t,d);
        build(t,f,d);
    }
    scanf("%d",&d);
    for(int i = 1 ; i <= d ; i ++)
    {
        scanf("%lld%lld%lld",&untr[i].d,&untr[i].f,&untr[i].t);
        for(int j = untr[i].f ; j <= untr[i].t ; j ++)
            usef[j][untr[i].d] = 1;
    }
    for(int i = 1 ; i <= n ; i ++)
        for(int j = i ; j <= n ; j ++)
        {
            memset(vis,0,sizeof(vis));
            for(int k = 2 ; k < m ; k ++)
            {
                for(int l = i ; l <= j ; l ++)
                    if(usef[l][k])
                    {
                        vis[k] = 1;
                        break;
                    }
            }
            spfa(1);
            if(dist[m] == 214748364132154527ll)
                dis[i][j] = dist[m];
            else
                dis[i][j] = dist[m] * (j - i + 1);
//          printf("i %d j %d dis_ij %d\n",i,j,dis[i][j]);
        }
    for(int i = 1 ; i <= n ; i ++)
    {
        f[i] = 2147483641;
        for(int j = 0 ; j < i ; j ++)
            f[i] = min(f[i],f[j] + dis[j+1][i] + kk);
    }
    printf("%lld\n",f[n]-kk);
    return 0;
}
/*
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
*/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值