树的直径+树的重心

树的直径

  • 求法 :两遍dfs分别求出最远的点,所得的两个点为直径的两个端点;
void dfs(int x,int fa)//find d point; 
{
	int i = last[x];

	while(i)
	{
		int y=en[i];
		if(y==fa)
		{
			i=nex[i];	continue;	
		}
		dfs(y,x);
		if(len[i]+gf[y]>gf[x])
		{
			gf[x]=len[i]+gf[y];
			df[x]=df[y];
		}
		i=nex[i];
	}
//	printf("---%d %d %lld\n",x,df[x],gf[x]);
	if(!df[x])
	{
		df[x]=x;
		gf[x]=0;
		return;
	}

}
	dfs(1,0);
	int ed = df[1];
	memset(df,0,sizeof df);
	memset(gf,0,sizeof gf);
	dfs(ed,0);

直径的一些性质:

  • 一棵树最多只有两条直径,若有一定有交点,并且交于中点。
  • 每个节点的距离最远的点一定是直径的其中一个端点

树的重心

  • 含义:树的重心也叫树的质心。找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡。
奇环(Odd-Eulerian Tree)是一种特殊的有向图,它的特征是有奇数个顶点度为偶数,其余顶点的度为奇数。奇环直径是指从其中一个奇度顶点到另一个奇度顶点的最大简单路径长度。 要计算奇环直径,我们通常需要遍历整个图并维护两个变量:当前最短距离(shortestDistance),以及已知最长的距离(longestDistance)。我们可以使用深度优先搜索(DFS)结合回溯的方法来进行查找。 以下是一个简单的C++代码示例,假设你已经有了一个表示奇环邻接关系的边集`edges`,其中每个元素是一个`std::pair<int, int>`,代表从节点`u`指向节点`v`的一条边: ```cpp #include <vector> #include <queue> int diameterOfOddEulerianTree(const std::vector<std::pair<int, int>>& edges) { std::vector<int> degrees(edges.size(), 0); for (const auto& edge : edges) { degrees[edge.first]++; degrees[edge.second]++; } // 奇数度顶点集合 std::vector<int> oddDegreeVertices; for (int i = 0; i < degrees.size(); ++i) { if (degrees[i] % 2 == 1) { oddDegreeVertices.push_back(i); } } if (oddDegreeVertices.empty()) { // 如果没有奇度顶点,说明不是奇环 return -1; } int shortestDistance = 0; int longestDistance = INT_MIN; // 初始化最长距离为任意两个奇度顶点之间的距离 longestDistance = dfs(oddDegreeVertices[0], 0, edges); // 从最后一个奇度顶点开始,再尝试寻找更长的路径 dfs(oddDegreeVertices.back(), 0, edges, &longestDistance); return longestDistance; } // DFS辅助函数,返回起点到终点的最长路径 int dfs(int vertex, int currentDistance, const std::vector<std::pair<int, int>>& edges, int* longestDistance) { *longestDistance = std::max(*longestDistance, currentDistance); std::queue<std::pair<int, int>> q; q.push({vertex, currentDistance}); while (!q.empty()) { int u = q.front().first; int dist = q.front().second; q.pop(); for (const auto& edge : edges[u]) { int v = edge.first; if (dist + 1 < degrees[v]) { // 避免重复计数 dfs(v, dist + 1, edges, longestDistance); } } } return *longestDistance; } ``` 在这个代码中,`diameterOfOddEulerianTree`函数首先计算每个节点的度,然后找到所有的奇度顶点。接下来,它执行两次DFS,分别从第一个和最后一个奇度顶点开始,更新最长距离。请注意,这个实现假定输入是有效的,即图中的所有边都是相连的,并且没有自环。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值