树的直径
树是连通无环图,树上任意两点之间的路径是唯一的。定义树上任意两点u; v的距离为u到v路径上边权的和。树的直径MN为树上最长路径,即点M和N是树上距离最远的两个点。此时,树的直径也称树的最长链。
NO.1树形DP求树的直径
我们设f[i]表示以i为根节点的所有子树中,与i距离最远的一个节点的路径。
状态转移方程为: f [ i ] = m a x ( f [ j ] + v a l ( i , j ) ) , j ∈ s o n ( i ) f[i]=max(f[j]+val(i,j)),j∈son(i) f[i]=max(f[j]+val(i,j)),j∈son(i)
表示以子树为根节点的最大路径与当前根节点连边后的最大值即为当前的最大值。
此时我们思考树的直径怎么求。
在这个图里·,我们求解f[1]时,通过枚举顺序,我们已经枚举到了节点3,且节点2已经被访问。
此时节点2和节点3的动态规划已经完成,假如是如图所示的红色部分为动态规划决策的边集。
而f[1][1]则已经连通了其中的一边,找到了一个不一定是最优的解。此时绿色和红色的边是f[1]一组合法的解。
通过观察,我们可以发现树的直径其实就是左子树中标有颜色的边+v(1,3)+右子树标有颜色的点,也就是f[1]+v(1,3)+f[3].
因此在枚举i和儿子j时,直径 D = m a x ( f [ i ] + v a l + f [ j ] ) D=max(f[i]+val+f[j]) D=max(f[i]+val+f[j]).
代码如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<vector>
#include<cmath>
#include<algorithm>
#define Mp make_pair
#define Read(a) scanf("%d",&a)
using namespace std;
int n,m,x,y,v,ans=0;
int f[50000];
struct edge {
int point,val;
};
vector<edge> a[50000];
void dp(int x,int dad)
{
for (int i=0;i<a[x].size();++i)
{
int point=a[x][i].point,val=a[x][i].val;
if (point==dad) continue;
dp(point,x);
ans=max(ans,f[x]+f[point]+val);
f[x]=max(f[x],f[point]+val);
}
return;
}
int main(void)
{
Read(n