讨论物体的表面深度对相机成像的影响

讨论物体的表面深度对相机成像的影响
2019.11.02 FesianXu

前言

对于不同的物体来说,其表面纹理,或者凸出凹陷各有不同,这些对于相机成像而言都会造成影响,笔者在这篇博文中尝试对此进行讨论。如有谬误,请联系指正。转载请注明出处。

∇ \nabla 联系方式:

e-mail: FesianXu@gmail.com

QQ: 973926198

github: https://github.com/FesianXu

知乎专栏: 计算机视觉/计算机图形理论与应用

微信公众号
qrcode


显然,我们常见的物体都并不是一个简单的平面,如Fig 1所示,其表面深度是各有不同的,联想到我们以前在[1]谈到的相机的针孔模型,和在[2]中谈到的投影相关的内容,我们发现,对于某个物体的投影而言,其投影坐标满足公式(1)
x ′ = x f z y ′ = y f z z ′ = f (1) \begin{aligned}x^{\prime} &= \dfrac{xf}{z} \\y^{\prime} &= \dfrac{yf}{z} \\z^{\prime} &= f\end{aligned}\tag{1} xyz=zxf=zyf=f(1)

在这里插入图片描述

我们发现,因为投影是从3D到2D的转换,因此显然在2D图片中,所有的深度都变成了焦距 z ′ = f z^{\prime} = f z=f,而像素点的2D坐标 ( x ′ , y ′ ) (x^{\prime}, y^{\prime}) (x,y)则是3D点深度 z z z和本身3D坐标 ( x , y , z ) (x,y,z) (x,y,z)的函数。因此,如果物体本身的深度不一致,比如如Fig 1中的,某些点离相机比较近,某些点离相机比较远,那么,其就不在满足线性变换的性质了,因为分母 z z z都一直在变化。

在这里插入图片描述

Fig 1. 不同形状的几何体其表面凸出凹陷各种各样。

再如Fig 2所示,因为物体本身的深度不一致引起的非线性扭曲,我们称之为投影缩放(foreshortening),注意到,我们这里谈到的非线性,指的是物体在2D平面上的投影的长度,和真实的长度不呈线性比例,也就是说投影长度“不可信”了,不能真实地表示实际物体

如图Fig 3所示,我们容易推想出,如果在不同深度下,即使物体本身的长度(红线长度)可能差别巨大,但是因为存在投影缩放,使得在平面上显示出来的投影大小相似,也就是有着较大的非线性了。

这里的物体本身的深度是物体的属性,和相机的位置无关,有些文献将其称之为belief[3].

在这里插入图片描述

Fig 2. 因为物体本身的深度引起的非线性,称之为投影缩放(foreshortening)。

在这里插入图片描述

Fig 3. 不同的深度导致其严重的非线性。

为了以后的分析方便,我们可以假设相机到物体的距离远远大于物体本身的深度(10倍以上),也就是[3]所说的low-belief的情况,在这种情况下,投影缩放造成的非线性可以省略,就有了所谓的弱透视投影[2]。

像这种成像场景距离相机很远,而导致场景本身的深度纹理可以忽略的情况下的相机模型,我们称之为仿射相机(affine camera)


Reference

[1]. https://blog.csdn.net/LoseInVain/article/details/102632940

[2]. https://blog.csdn.net/LoseInVain/article/details/102698703

[3]. https://blog.csdn.net/LoseInVain/article/details/102739778

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值