relevance feedback/pseudo relevance feedback
相关性反馈 [1](relevance feedback,RF)/伪相关性反馈 [2](pseudo relevance feedback,PRF)是常见的提高相关性的技术。其中相关性反馈需要搜索系统和用户进行多次交互,才能对结果进行迭代优化,如Fig 1.1所示,如果用户给定了一个检索词『自行车』,那么系统将会首先给定一个候选集,如Fig 1.1的第一排所示。待用户勾选了若干和检索词有关的doc之后,系统将会基于用户勾选的doc进行相关性的优化,从而推送更为优化的结果(比如第二排的结果),这种方法相当于让用户打样本标注,十分鸡贼,然而用户体验并不好。
为了提高用户体验,存在一些称之为伪相关性反馈的方法,即是先用粗排模型先对doc进行粗糙地排序,取Top k结果视为是用户选择的结果,再根据这Top k结果优化搜索系统。
Reference
[1]. https://nlp.stanford.edu/IR-book/html/htmledition/relevance-feedback-and-pseudo-relevance-feedback-1.html
[2]. https://nlp.stanford.edu/IR-book/html/htmledition/pseudo-relevance-feedback-1.html