搜索系统相关术语笔记

本文探讨了相关性反馈(RF)和伪相关性反馈(PRF)在信息检索中的应用,重点介绍了如何通过用户交互优化搜索结果,以及PRF如何改善用户体验,通过粗排模型与Topk策略简化反馈过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

relevance feedback/pseudo relevance feedback

相关性反馈 [1](relevance feedback,RF)/伪相关性反馈 [2](pseudo relevance feedback,PRF)是常见的提高相关性的技术。其中相关性反馈需要搜索系统和用户进行多次交互,才能对结果进行迭代优化,如Fig 1.1所示,如果用户给定了一个检索词『自行车』,那么系统将会首先给定一个候选集,如Fig 1.1的第一排所示。待用户勾选了若干和检索词有关的doc之后,系统将会基于用户勾选的doc进行相关性的优化,从而推送更为优化的结果(比如第二排的结果),这种方法相当于让用户打样本标注,十分鸡贼,然而用户体验并不好。
RF

Fig 1.1 相关性反馈的示例。

为了提高用户体验,存在一些称之为伪相关性反馈的方法,即是先用粗排模型先对doc进行粗糙地排序,取Top k结果视为是用户选择的结果,再根据这Top k结果优化搜索系统。

Reference

[1]. https://nlp.stanford.edu/IR-book/html/htmledition/relevance-feedback-and-pseudo-relevance-feedback-1.html

[2]. https://nlp.stanford.edu/IR-book/html/htmledition/pseudo-relevance-feedback-1.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值