设置可见GPU,进行多显卡深度学习训练

在深度学习中,如果一台电脑具有多个NVIDIA的GPUs,用户想要在不同的GPU上训练不同的网络,那么在程序中指定占用的GPU的id,在python中如:

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"]="0"

即可指定GPU id为0的GPU可见,其他的不可见,就不会占用其他GPU了。

### NVIDIA 深度学习 GPU 显卡型号及性能 #### Tesla 系列显卡 Tesla系列显卡是NVIDIA针对高性能计算和人工智能领域推出的产品线,被广泛应用于科学计算、深度学习、大规模数据分析等领域。该系列产品如A100、A800、V100、T4、P40等均具备强大的并行计算能力和高性能计算效率[^2]。 - **Tesla A100** - 基于最新的安培架构,提供卓越的浮点运算能力。 - 支持多种精度级别(FP32, FP64, TF32),适应不同应用场景的需求。 - **Tesla V100** - 使用Volta架构,配备HBM2内存,拥有极高的带宽。 - 特有的Tensor Core单元显著提升了矩阵乘法的速度,在深度神经网络训练中有出色表现。 - **Tesla T4** - Turing架构产品之一,集成了RT Cores用于光线追踪加速。 - 对于推理任务特别有效率,功耗相对较低而性价比高。 - **Tesla P40** - Pascal架构下的旗舰级数据中心GPU。 - 提供大量的CUDA核心数,适合处理复杂的机器学习模型训练工作负载。 #### GeForce 类型家用显卡 虽然主要面向游戏市场设计,但部分高端GeForce RTX/ GTX系列同样能够胜任轻量级至中等规模的深度学习项目: - **GeForce RTX 3090 / 3080 Ti** - 新一代Ampere架构带来更高的能效比。 - 大容量GDDR6X显存有助于加载更大尺寸的数据集。 - **GeForce RTX 2080 Super / 2070 Super** - Turing架构下性价比较好的选项。 - 可满足大多数常见AI算法开发环境的要求。 对于希望从事深度学习工作的个人开发者来说,选择合适的NVIDIA GPU时不仅要考虑硬件规格参数,还要关注所选设备能否良好支持目标框架(比如TensorFlow、PyTorch)。此外,考虑到长期维护成本和技术更新速度等因素也很重要[^1]。 ```python import tensorflow as tf from keras import backend as K # 设置可见GPU ID gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Restrict TensorFlow to only use the first GPU tf.config.experimental.set_visible_devices(gpus[0], 'GPU') logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU") except RuntimeError as e: # Visible devices must be set before GPUs have been initialized print(e) K.clear_session() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值