深度学习相关的代码大多数要使用 NVIDIA 显卡进行训练和预测,以提高训练速度和质量。Linux 服务器中如何管理 NVIDIA GPU 卡是一个必备的技能。下面介绍一下 GPU 使用的说明,帮助大家学会迅速使用NVIDIA显卡以及多卡的使用。
1. 创建虚拟环境
一般服务器的使用者较多,每个使用者所需要的环境不相同。如果大家都是用系统环境,很容易造成冲突,导致他人的代码不能正常运行或者导致系统内部的软件环境错误。所以,使用服务器首先需要创建自己的虚拟环境。
常用的软件有很多,例如Docker,Conda, pyenv和virtualenv。
1.1 Conda
如果需要的包要求不同版本的Python,你无需切换到不同的环境,因为conda同样是一个环境管理器。仅需要几条命令,你可以创建一个完全独立的环境来运行不同的Python版本,同时继续在你常规的环境中使用你常用的Python版本。conda使用起来方便快捷,同时如果服务器的资源也比较充足,非常适合使用conda。
下载并安装Anaconda
请参考:安装配置Anaconda
Conda使用cuda
conda install cudatoolkit
# 如果指定版本
#conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
根据自己的需要安装更高的版本。
Conda创建自己的环境
conda create -n <your_env_name>
<your_env_name>
是自定义环境名。
Conda激活环境
conda activate <your_env_name>
Conda常用命令
# 帮助命令
conda -h
conda help
# 配置频道(已有)
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/main/
# 退出当前环境
conda deactivate
# 查看基本信息
conda info
conda info -h
# 查看当前存在环境
conda env list
conda info --envs
# 删除环境
conda remove -n yourname --all