一、Kafka Broker 工作流程
1.1 zookeeper中存储的kafka信息
启动zk客户端:
./bin/zkCli.sh
查看kafka信息:
ls /kafka
1.2 kafka broker 总体工作流程
-
broker启动,向zk注册自己
-
先注册的controller为controller的leader
-
由选出的controller监听brokder节点的变化
-
controller决定选举broker的leader
-
controller将节点信息上传至zk
-
其他controller从zk同步broker相关信息
-
如果brokder的leader宕机
-
controller监听到brokder节点的变化
-
controller从zk获取ISR列表
-
controller辅助选举新的broker leader
在isr中存活为前提,按照AR中排在前面的优先
-
controller将新的broker信息及isr列表更新至zk
1.3 broker重要参数
replica.lag.time.max.ms
:ISR 中,如果 Follower 长时间未向 Leader 发送通 信请求或同步数据,则该 Follower 将被踢出 ISR。 该时间阈值,默认 30s。auto.leader.rebalance.enable
:默认是 true。 自动 Leader Partition 平衡。leader.imbalance.per.broker.percentage
:默认是 10%。每个 broker 允许的不平衡的 leader 的比率。如果每个 broker 超过了这个值,控制器 会触发 leader 的平衡。leader.imbalance.check.interval.seconds
:默认值 300 秒。检查 leader 负载是否平衡的间隔时 间。log.segment.bytes
:Kafka 中 log 日志是分成块存储的,此配置是指 log 日志划分成块的大小,默认值 1G。log.index.interval.bytes
:默认 4kb,kafka 里面每当写入了 4kb 大小的日志 (.log),然后就往 index 文件里面记录一个索引。log.retention.hours
:Kafka 中数据保存的时间,默认 7 天。log.retention.minutes
:Kafka 中数据保存的时间,分钟级别,默认关闭。log.retention.ms
:Kafka 中数据保存的时间,毫秒级别,默认关闭。log.retention.check.interval.ms
:检查数据是否保存超时的间隔,默认是 5 分钟。log.retention.bytes
:默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的 segment。log.cleanup.policy
:默认是 delete,表示所有数据启用删除策略; 如果设置值为 compact,表示所有数据启用压缩策 略。num.io.threads
:默认是 8。负责写磁盘的线程数。整个参数值要占 总核数的 50%。num.replica.fetchers
:副本拉取线程数,这个参数占总核数的 50%的 1/3num.network.threads
:默认是 3。数据传输线程数,这个参数占总核数的 50%的 2/3 。log.flush.interval.messages
:强制页缓存刷写到磁盘的条数,默认是 long 的最 大值,9223372036854775807。一般不建议修改, 交给系统自己管理。log.flush.interval.ms
:每隔多久,刷数据到磁盘,默认是 null。一般不建 议修改,交给系统自己管理。
二、节点服役与退役
2.1 节点服役
-
新安装一个
kafka
节点注意:
brokder.id
必须是集群中唯一的 -
启动新节点
-
查看zk中关于
broker
的节点信息ls /kafka/broker/ids
此处应该会有
4
个节点id
-
创建一个
json
文件,里面包含需要负载均衡的topic
信息topics-to-move.json
{ "topics": [ { "topic": "test-topic-0" } ], "version": 1 }
-
创建一个负载均衡计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --topics-to-move-json-file topics-to-move.json --broker-list "1,2,3,4" --generate
此命令执行后,会生成存储计划
-
创建副本存储计划
创建文件
increase-replication-factor.json
,将存储计划拷贝到该文件中{ "version": 1, "partitions": [ { "topic": "test-topic-0", "partition": 0, "replicas": [ 3, 1, 2 ], "log_dirs": [ "any", "any", "any" ] }, { "topic": "test-topic-0", "partition": 1, "replicas": [ 4, 2, 3 ], "log_dirs": [ "any", "any", "any" ] }, { "topic": "test-topic-0", "partition": 2, "replicas": [ 1, 3, 4 ], "log_dirs": [ "any", "any", "any" ] } ] }
-
执行副本存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --execute
-
验证副本存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --verify
2.2 节点退役
-
创建一个
json
文件,里面包含需要负载均衡的topic
{ "topics": [ { "topic": "test-topic-0" } ], "version": 1 }
-
创建执行计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --topics-to-move-json-file topics-to-move.json --broker-list "1,2,3" --generate
执行命令后,会生成副本的存储计划
-
创建副本存储计划
创建文件
increase-replication-factor.json
,将存储计划拷贝到该文件中 -
执行副本存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --execute
-
验证副本存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --verify
-
退役节点
关闭需要退役的节点
三、kafka副本
3.1 副本基本信息
-
Kafka
副本作用: 提高数据可靠性。 -
Kafka
默认副本1
个,生产环境一般配置为2
个,保证数据可靠性; 太多副本会 增加磁盘存储空间,增加网络上数据传输,降低效率。 -
Kafka
中副本分为:Leader
和Follower
。Kafka
生产者只会把数据发往Leader
, 然后Follower
找Leader
进行同步数据。 -
Kafka
分区中的所有副本统称为AR(Assigned Repllicas)
。AR = ISR + OSR
ISR
,表示和Leader
保持同步的Follower
集合。如果 Follower 长时间未向Leader
发送通信请求或同步数据,则该Follower
将被踢出ISR
。该时间阈值由**replica.lag.time.max.ms**
参数设定,默认30s
。Leader
发生故障之后,就会从ISR
中选举新的Leader
。OSR
,表示Follower
与Leader
副本同步时,延迟过多的副本。
3.2 故障处理
follower
故障处理
leader
故障处理
3.3 手动调整分区副本存储
在生成环境中,服务器的性能不尽相同,所以需要手动对副本存储进行手动干预
-
创建一个
topic
kafka-topics.sh --bootstrap-server kafka-21:9092 --create --partitions 4 --replication-factor 2 --topic test-topic
-
创建一个存储计划
将存储计划的内容,放在文件
increase-replication-factor.json
中{ "version": 1, "partitions": [ { "topic": "test-topic", "partition": 0, "replicas": [ 1, 2 ] }, { "topic": "test-topic", "partition": 1, "replicas": [ 1, 2 ] }, { "topic": "test-topic", "partition": 2, "replicas": [ 1, 2 ] }, { "topic": "test-topic", "partition": 3, "replicas": [ 1, 2 ] } ] }
-
执行存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --execute
-
验证存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --verify
kafka-topics.sh --bootstrap-server kafka-21:9092 --describe --topic test-topic
3.4 leader partition 负载平衡
重要参数:
auto.leader.rebalance.enable
:默认是 true。 自动Leader Partition
平衡。生产环 境中,leader
重选举的代价比较大,可能会带来 性能影响,建议设置为 false 关闭。leader.imbalance.per.broker.percentage
:默认是10%
。每个broker
允许的不平衡的leader
的比率。如果每个broker
超过了这个值,控制器 会触发 leader 的平衡。leader.imbalance.check.interval.seconds
:默认值300
秒。检查leader
负载是否平衡的间隔 时间。
3.5 增加副本
针对test-topic,增加副本存储计划
-
创建副本存储计划
{ "version": 1, "partitions": [ { "topic": "test-topic", "partition": 0, "replicas": [ 1, 2, 3 ] }, { "topic": "test-topic", "partition": 1, "replicas": [ 1, 2, 3 ] }, { "topic": "test-topic", "partition": 2, "replicas": [ 1, 2, 3 ] }, { "topic": "test-topic", "partition": 3, "replicas": [ 1, 2, 3 ] } ] }
-
执行副本存储计划
kafka-reassign-partitions.sh --bootstrap-server kafka-21:9092 --reassignment-json-file increase-replication-factor.json --execute
四、文件存储
4.1 文件存储机制
通过工具查询index和log信息
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.index
kafka-run-class.sh kafka.tools.DumpLogSegments --files ./00000000000000000000.log
日志存储参数配置:
log.segment.bytes
:Kafka
中log
日志是分成一块块存储的,此配置是指log
日志划分 成块的大小,默认值 1G。log.index.interval.bytes
:默认 4kb,kafka
里面每当写入了4kb
大小的日志(.log
),然后就 往index
文件里面记录一个索引。 稀疏索引
4.2 文件清理策略
Kafka
中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。
log.retention.hours
,最低优先级小时,默认7天。log.retention.minutes
,分钟。log.retention.ms
,最高优先级毫秒。log.retention.check.interval.ms
,负责设置检查周期,默认5分钟。
Kafka
中提供的日志清理策略有 delete
和 compact
两种。
-
delete
日志删除:将过期数据删除-
log.cleanup.policy
=delete
所有数据启用删除策略 -
基于时间: 默认打开。以
segment
中所有记录中的最大时间戳作为该文件时间戳。 -
基于大小: 默认关闭。超过设置的所有日志总大小,删除最早的
segment
。log.retention.bytes
,默认等于-1
,表示无穷大。
-
-
compact 日志压缩
compact
日志压缩:对于相同key
的不同value
值,只保留最后一个版本。log.cleanup.policy
=compact
所有数据启用压缩策略压缩后的
offset
可能是不连续的,比如上图中没有6,当从这些offset
消费消息时,将会拿到比这个offset
大 的offset
对应的消息,实际上会拿到offset
为7的消息,并从这个位置开始消费。这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息 集里就保存了所有用户最新的资料。
五、高效读写数据
-
Kafka 本身是分布式集群,可以采用分区技术,并行度高
-
读数据采用稀疏索引,可以快速定位要消费的数据
-
顺序写磁盘
Kafka
的producer
生产数据,要写入到log
文件中,写的过程是一直追加到文件末端, 为顺序写。官网有数据表明,同样的磁盘,顺序写能到600M/s
,而随机写只有100K/s
。这 与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。 -
页缓存 + 零拷贝技术
- 零拷贝:
Kafka
的数据加工处理操作交由Kafka
生产者和Kafka消费者处理。Kafka Broker
应用层不关心存储的数据,所以就不用
走应用层,传输效率高。
- PageCache页缓存: Kafka重度依赖底层操作系统提供的
PageCache
功能。当上层有写操作时,操作系统只是将数据写入PageCache
。当读操作发生时,先从PageCache
中查找,如果找不到,再去磁盘中读取。实际上PageCache
是把尽可能多的空闲内存 都当做了磁盘缓存来使用。
参数信息:
log.flush.interval.messages
:强制页缓存刷写到磁盘的条数,默认是long
的最大值,9223372036854775807
。一般不建议修改,交给系统自己管 理。log.flush.interval.ms
:每隔多久,刷数据到磁盘,默认是null
。一般不建议修改, 交给系统自己管理。
- 零拷贝: