深入理解计算机系统——信息的表示与处理(3.整数的运算、4.浮点数)

本文深入探讨了计算机系统中整数和浮点数的运算,包括加法、乘法及其溢出处理,介绍了补码运算、移位优化以及浮点数的IEEE标准表示和舍入策略,内容涵盖无符号和有符号整数的运算规则以及浮点数的特殊值处理。
摘要由CSDN通过智能技术生成

整数的运算

这章书本的内容感觉很复杂,且推导较多。主要就是一些运算的溢出问题,而底层的运算规则又没怎么讲,下面的底层运算规则是自己推导的。

加法

无符号的加法就是二进制数的直接相加然后对位数取模,这比较好理解。如果溢出就是取模后的结果。
有符号的加法是数的补码直接进行加法运算,然后还是取模。溢出就是取模的结果。

补码的非就是每位取反。

乘法

在二进制位的层面,乘法运算和十进制的乘法运算的方法是一样的。如:123 = 11000011 = 0011000+001100 = 100100 = 36。
补码也是一样的运算方式。
超过表达位数的需要取模。

乘除法优化

乘除在计算机运算中十分耗时。于是提出使用移位和加法来替代乘法。
数值二进制数的左移和右移相当于进行了乘法和除法。
x14 = x(23+22+21) = (x<<3)+(x<<2)+(x<<1)

浮点数

浮点数是近似的表示方法,在向整数转换时会有误差或者错误。

浮点数表示对形如V = x×2y的有理数进行编码。
普遍使用IEEE标准来表示浮点数。
V = (-1)s×M×2E
s:表示正负值
M:尾数,是一个二进制小数
E:阶码,2的次幂的权重
在这里插入图片描述规格化值:
最普遍情况。E中位不全为0或1。
E = e - Bias。
e是位表示的无符号数,Bias是等于2k-1-1的偏置值。
M = 1 + f。

非规格化值:
E位码全为0时。
E = 1-Bias
M = f

特殊值:
E位码全为1,M全为0,表示无穷。s=0表示正无穷,s=1表示负无穷。
E位码全为1,M非全0,表示NAN(not a number)

在这里插入图片描述
在这里插入图片描述

舍入

默认为向偶数舍入,即舍入之后的最后一个数是偶数。
在这里插入图片描述

小结

果然在看的时候还是有些晦涩难懂,而且根本不知道看了有什么用。
后面很多也是这样,为了工作准备打算先跳过一些,看看网络编程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值