HDOJ1027 Ignatius and the Princess II

这道题有多种做法。数学编码、康托展开、STL库等。下面的代码选用的是数学编码。

原理:6个数的全排列共有6!=720种。

如果确定一个1,则其后的5个数有5!=120种。

第一个数可以取1,2,……,6.将它们从小到大编码为0~5.

假定第一个数是1,有120种情况,第二个数可以取2~6,从小到大编码为0~4,每一种编码对应24种情况。以此类推。(类似十进制转N进制)

例如,142356的编码是020000,对应第2*4!+1=49小排列

时间:15毫秒

#include "stdio.h"
int main(){
	unsigned char is_used[1002];
	int n,m,i,j,Count,c;
	int jiecheng[12]={1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800};
	while(scanf("%d%d",&n,&m)!=EOF){
	for(i=1;i<=n;i++)is_used[i]=0;
	if(n>=13){
		for(i=1;i<=n-12;i++){
			printf("%d ",i);
			is_used[i]=1;
		}
		for(i=1;i<=12;i++){
			Count=0;
			c=(m-1)/jiecheng[12-i]+1;
			m=(m-1)%jiecheng[12-i]+1;
			for(j=n-11;j<=n;j++){
				if((!is_used[j])&&(Count<c))Count++;
				if(Count==c){
					printf("%d",j);
					is_used[j]=1;
					break;
				}
			}
			if(i!=n)printf(" ");
		}
	}
	else{
		for(i=1;i<=n;i++){
			Count=0;
			c=(m-1)/jiecheng[n-i]+1;
			m=(m-1)%jiecheng[n-i]+1;
			for(j=1;j<=n;j++){
				if((!is_used[j])&&(Count<c))Count++;
				if(Count==c){
					printf("%d",j);
					is_used[j]=1;
					break;
				}
			}
			if(i!=n)printf(" ");
		}
	}
	printf("\n");
}
	return 0;
}

要注意的是,每一组数据的最后一个数后面不能留空格。这不可以通过printf语句用退格键符号(若在某行首,则退格键无效)(苯渣就是因为这个问题WA了6次!!!)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值