python查找相似图片或重复图片

1.查找重复图片

利用文件的MD5值可查找完全一样的重复图片

import os,time,hashlib

def getmd5(file):
    if not os.path.isfile(file):  
        return  
    fd = open(file,'rb')
    md5 = hashlib.md5()
    md5.update(fd.read())
    fd.close()
    return md5.hexdigest() 

if __name__ == "__main__":
    allfile = []
    md5list = []
    list_delete = []

    start = time.time()
    path = 'D:\\_PLAY\\新建文件夹\\'

    for filepath,dir,filelist in os.walk(path):
        for filename in filelist:
            allfile.append(os.path.join(filepath,filename))

    #根据MD5值比较
    for photo in allfile:
        md5sum = getmd5(photo)
        if md5sum not in md5list:
            md5list.append(md5sum)
        else:
            list_delete.append(photo)
    print('重复的照片有:',list_delete)
    
    #删除图片
    for i in range(len(list_delete)):
        os.remove(list_delete[i])
    

二.查找相似图片

本文采用四种哈希值进行比较:
1.感知哈希(perception hashing)
2.平均散列(average hashing)
3.梯度散列(difference hashing)
4.离散小波变换(wavelet hashing)

import os,imagehash
from PIL import Image

def hash(path):
    highfreq_factor = 4 # resize的尺度
    hash_size = 32 # 最终返回hash数值长度
    image_scale = 64
    img_size = hash_size * highfreq_factor
    list_file = []
    list_phash = []
    list_ahash = []
    list_dhash = []
    list_whash = []
    for file in os.listdir(path):
        if os.path.splitext(file)[1] == '.jpg':  
            path_file = os.path.join(path, file)  # 拼路径
            list_file.append(file)
            phash = imagehash.phash(Image.open(path_file),hash_size=hash_size,highfreq_factor=highfreq_factor)#感知哈希(perception hashing)
            ahash = imagehash.average_hash(Image.open(path_file),hash_size=hash_size)#平均散列(average hashing)
            dhash = imagehash.dhash(Image.open(path_file),hash_size=hash_size)#梯度散列(difference hashing)
            whash = imagehash.whash(Image.open(path_file),image_scale=image_scale,hash_size=hash_size,mode = 'db4')#离散小波变换(wavelet hashing)
            list_phash.append(phash)
            list_ahash.append(ahash)
            list_dhash.append(dhash)
            list_whash.append(whash)
    #print(list_hash)
    for i in range(len(list_file)):
        for j in range(i+1,len(list_file)):
            phash_value = 1-(list_phash[i]-list_phash[j])/len(list_phash[i].hash)**2
            ahash_value = 1-(list_ahash[i]-list_ahash[j])/len(list_ahash[i].hash)**2
            dhash_value = 1-(list_dhash[i]-list_dhash[j])/len(list_dhash[i].hash)**2
            whash_value = 1-(list_whash[i]-list_whash[j])/len(list_whash[i].hash)**2
            value_hash = max(phash_value,ahash_value,dhash_value,whash_value)
            if(value_hash > 0.9):#阈值设为0.9
                size_i = os.path.getsize(path + '\\' + list_file[i])
                size_j = os.path.getsize(path + '\\' + list_file[j])
                print(list_file[i],str(size_i/1024)+'KB')
                print(list_file[j],str(size_j/1024)+'KB')
                print(value_hash)
                print('***********************')

if __name__ == '__main__':
    path = r'D:\_PLAY\新建文件夹\Excel\ALL_Daily'
    hash(path)
### 回答1: 图片去重是一个比较常见的任务,可以使用哈希算法实现。具体步骤如下: 1. 将所有图片的像素值转换成一个固定长度的字符串表示。可以使用感知哈希算法(Perceptual Hash,简称pHash),它可以将不同分辨率、不同大小、不同格式的图片转换为固定长度的字符串表示。 2. 将所有字符串进行比较,如果两个字符串相似度高于某个阈值,则认为这两个图片相似的,只保留其中一个图片即可。 下面是使用Python实现基于pHash算法的图片去重的代码示例: ```python import os import imagehash from PIL import Image # 计算图片的pHash值 def get_image_phash(image_path): with Image.open(image_path) as im: phash = imagehash.phash(im) return phash # 判断两个图片是否相似 def is_image_similar(image_path1, image_path2, threshold=5): phash1 = get_image_phash(image_path1) phash2 = get_image_phash(image_path2) hamming_distance = phash1 - phash2 return hamming_distance <= threshold # 基于pHash算法的图片去重 def deduplicate_images(image_dir, threshold=5): image_paths = [os.path.join(image_dir, filename) for filename in os.listdir(image_dir)] for i, path1 in enumerate(image_paths): for j, path2 in enumerate(image_paths[i+1:], i+1): if is_image_similar(path1, path2, threshold): print(f"Remove {path2}") os.remove(path2) # 测试 if __name__ == '__main__': image_dir = "/path/to/image/dir" deduplicate_images(image_dir, threshold=5) ``` 代码中使用了`imagehash`库来计算图片的pHash值,`PIL`库来打开图片文件。函数`is_image_similar`用于判断两个图片是否相似,函数`deduplicate_images`则遍历指定目录下的所有图片,如果有相似图片则删除其中一个。 ### 回答2: Python图片去重是指通过某种算法或方法,从给定的图片集合中相似重复图片,并进行去除操作,以减少存储空间或提高查找效率。 实现图片去重可以分为以下步骤: 1. 加载图片:使用Python的图像处理库(如Pillow)或使用第三方库(如OpenCV)加载图片,将其转换为计算机能够处理的数据格式。 2. 特征提取:对图片进行特征提取,以便后续对比和识别。常用的特征提取方法有哈希算法(如MD5、SHA1)、感知哈希算法(Perceptual Hashing)、局部二值模式(Local Binary Patterns)等。 3. 相似度计算:根据提取的特征,计算图片之间的相似度。可以使用相似度度量算法(如余弦相似度、汉明距离、欧式距离)来衡量图片之间的相似程度。 4. 去重操作:根据设定的相似度阈值,将相似度高于阈值的图片进行去重操作。可以选择保留第一张出现的图片,或根据自定义策略选择其他图片进行保留或删除。 5. 保存结果:将去重后的图片保存到指定的路径或数据库中,以备后续使用。 需要注意的是,图片去重是一个计算密集型的任务,处理大量图片可能需要较长的时间和较高的计算资源。 除了以上方法,还可以借助深度学习技术中的卷积神经网络(Convolutional Neural Network, CNN)进行图片相似度计算和去重。通过对训练好的CNN模型进行特征提取和比对,可以得到更精确的相似度结果,进而进行去重操作。 总之,Python提供了各种图像处理库和算法,可以灵活地实现图片去重功能。根据实际需求和资源限制,选择合适的方法和工具,可以高效地完成图片去重任务。 ### 回答3: 要实现Python图片去重,可以按照以下步骤进行: 1. 导入所需的Python库。首先,我们需要导入PIL库(Python Imaging Library)来处理图片。可以使用以下代码导入PIL库: ```python from PIL import Image ``` 2. 获取图片的哈希值。哈希值是一个对文件进行唯一标识的字符串。我们可以使用PIL库的`Image`模块来打开图片,并使用`hash`方法获取哈希值。例如,我们可以使用以下代码获取一张图片的哈希值: ```python image = Image.open('image.jpg') image_hash = image.hash() ``` 3. 对比图片的哈希值。现在,我们可以将所有的图片哈希值存储在一个列表中,并使用循环来对比它们。如果两个哈希值相同,那么两个图片就是相同的。我们可以使用以下代码进行对比: ```python duplicated_images = [] for image_path in image_paths: image = Image.open(image_path) image_hash = image.hash() if image_hash in duplicated_images: # 说明图片重复了 print(f'{image_path} 是重复图片') else: duplicated_images.append(image_hash) ``` 4. 删除重复图片。最后一步是删除重复图片。对于每一对重复图片,我们可以使用`os`模块的`remove`函数来删除其中一个图片。例如: ```python import os os.remove('duplicate_image.jpg') ``` 综上所述,以上是使用Python进行图片去重的基本步骤。当然,具体的实现方式还可以根据实际需要进行调整和扩展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值