NLP之基于TextCNN的文本情感分类

TextCNN

1.理论

1.1 基础概念

在文本处理中使用卷积神经网络:将文本序列当作一维图像

一维卷积 -> 基于互相关运算的二维卷积的特例:
请添加图片描述

多通道的一维卷积:
请添加图片描述

最大汇聚(池化)层:
请添加图片描述

1.2 textCNN模型结构

textCNN模型设计如下所示:

  1. 定义多个一维卷积核,并分别对输入执行卷积运算。具有不同宽度的卷积核可以捕获不同数目相邻词元之间的局部特征
  2. 在所有输出通道上执行最大时间汇聚层(MaxPool),然后将所有标量汇聚输出连结为向量
  3. 使用全连接层将连结后的向量转换为输出类别。可以用torch.nn.Dropout(0.5)来减少过拟合。

请添加图片描述

图15.3.5通过一个具体的例子说明了textCNN的模型架构。输入是具有11个词元的句子,其中每个词元由6维向量表示(即单词的嵌入向量长度为6)。定义两个大小为(6,4)和(6,4)的一维卷积核(长必须为嵌入向量长度),这两个卷积核通道数分别为4和5,它们分别4个产生宽度为11-2+1=10的输出通道和5个宽度为11-4+1=8的输出通道。尽管这4+5=9个通道的宽度不同,但最大时间汇聚(池化)层在所有输出通道上执行MaxPool(相当于在一个通道上的所有词元中选择最大值),给出了一个宽度的4+5=9的一维向量,该向量最终通过全连接层被转换为用于二元情感预测的2维输出向量


  1. 和图片不同,由于词元具有不可分割性,所以卷积核的长度必须是嵌入向量长度
  2. 在文本处理中,卷积核的长度是嵌入向量维度(特征维度),而卷积核的宽度就是N-gram的窗口大小,代表了词元和上下文词之间的词距

2.实验

2.1 实验步骤

  1. 数据预处理,得到单词字典、样本数等基本数据
  2. 构建CNN模型,设置卷积核个数、输入输出通道数、宽度和输入嵌入向量的维度
  3. 训练
    1. 代入数据,经过卷积和池化,再压平全连接,最后得到类别
    2. 把模型输出值和真实值相比,求得误差损失函数,运用Adam动量法梯度下降
  4. 测试

2.2 算法模型

请添加图片描述

"""
Task: 基于TextCNN的文本情感分类
Author: ChengJunkai @github.com/Cheng0829
Email: chengjunkai829@gmail.com
Date: 2022/09/06
Reference: Tae Hwan Jung(Jeff Jung) @graykode
"""

import numpy as np
import torch, os, sys, time
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

'''1.数据预处理'''
def pre_process(sentences):
    # 最大句子长度:3
    sequence_length = 0
    for sen in sentences:
        if len(sen.split()) > sequence_length:
            sequence_length = len(sen.split())
    # 根据最大句子长度,把所有句子填充成相同长度
    for i in range(len(sentences)):
        if sequence_length > len(sentences[i].split()):
            sentences[i] = sentences[i] + \
                (" " + "''") * (sequence_length - len(sentences[i].split()))
    # 分词
    # ['i', 'love', 'you', 'he', 'loves', 'me', 'she', 'likes', 'baseball', 'i', 'hate', 'you', 'sorry', 'for', 'that', 'this', 'is', 'awful']
    word_sequence = " ".join(sentences).split()
    # 去重
    word_list = []
    '''
    如果用list(set(word_sequence))来去重,得到的将是一个随机顺序的列表(因为set无序),
    这样得到的字典不同,保存的上一次训练的模型很有可能在这一次不能用
    (比如上一次的模型预测碰见i:0,love:1,就输出you:2,但这次模型you在字典3号位置,也就无法输出正确结果)
    '''
    for word in word_sequence:
        if word not in word_list:
            word_list.append(word)
    # 生成字典
    word_dict = {w: i for i, w in enumerate(word_list)}  # 注意:单词是键,序号是值
    # 词库大小:16
    vocab_size = len(word_dict)

    return word_sequence, word_list, word_dict, vocab_size, sentences, sequence_length

'''根据句子数据,构建词元的嵌入向量'''
def make_batch(sentences):   
    # 构建输入输出矩阵向量
    inputs = []
    for sen in sentences:
        inputs.append([word_dict[word] for word in sen.split()])
    inputs = torch.LongTensor(np.array(inputs)).to(device) # (6,3)
    targets = torch.LongTensor(np.array(labels)).to(device) # [1 1 1 0 0 0]
    return inputs, targets

'''2.构建模型(本实验结构图详见笔记)'''
class TextCNN(nn.Module):  # nn.Module是Word2Vec的父类
    def __init__(self):
        '''super().__init__()
        继承父类的所有方法(),比如nn.Module的add_module()和parameters()
        '''
        super().__init__()

        """2-1.输入层"""
        '''W = nn.Embedding(num_embeddings,embedding_dim) -> 嵌入矩阵
        Args:
            num_embeddings (int): 嵌入字典的大小(单词总数) -> 嵌入向量个数(去重)
            embedding_dim (int): 每个嵌入向量的维度(即嵌入向量的长度)
        Returns:
            X:(sequence_length, words) -> W(X):(sequence_length, words, embedding_dim)
            W(X)相当于给X中的6*3个单词,每个输出一个长度为2的嵌入向量,构建真正的嵌入矩阵(按序,不去重)
        '''
        # (16,2) X:(6,3) -> W(X):[6,3,2]:[样本数, 样本单词数, 嵌入向量长度]
        num_embeddings = vocab_size
        self.W = nn.Embedding(num_embeddings, embedding_size) # (16,2)
        
        """2-2.卷积层"""
        self.filter_sizes = filter_sizes # [2, 2, 2] 卷积核宽度:2x2,双通道
        self.sequence_length = sequence_length # 样本单词数
        modules = [] 
        '''nn.Conv2d(in_channels, out_channels, kernel_size)
        对于通道数为in_channels的图像(嵌入矩阵),用out_channels个大小为kernel_size的核叠加卷积
        Args:
            in_channels (int): 输入图像中的通道数(即卷积时的层数,必须等于图像的通道数(层数))
            out_channels (int): 卷积产生的通道数(即用几个卷积核叠加)
            kernel_size (int or tuple): 卷积内核的大小
        '''
        # filter_sizes:卷积核宽度(即上下文词距)  len(filter_sizes)即代表卷积核数量
        for size in filter_sizes:
            # 卷积核输出通道数num_channels=4, 嵌入向量维度embedding_size=2 
            # nn.Conv2d(卷积核输入通道数(层数), 卷积核输出通道数, (卷积核宽度, 嵌入向量维度)) 
            # 和图片不同,由于词元具有不可分割性,所以卷积核的长度必须是嵌入向量维度
            modules.append(nn.Conv2d(1, num_channels, (size, embedding_size))) # nn.Conv2d(1,4,2,2)
        self.filter_list = nn.ModuleList(modules)

        """2-3.全连接层/输出层"""
        # 卷积核输出通道数 * 卷积核数量 = 最终通道数(此实验中各卷积核完全一样,其实可以不同)
        self.num_filters_total = num_channels * len(filter_sizes) # 4*3=12 
        # 通过全连接层,把卷积核最终输出通道转换为情感类别
        self.Weight = nn.Linear(self.num_filters_total, num_classes, bias=False)
        # nn.Parameter()设置可训练参数,用作偏差b
        self.Bias = nn.Parameter(torch.ones(num_classes)) # (2,)

    def forward(self, X): # X:(6,3)
        """3-1.输入层"""
        # self.W(X):[batch_size, sequence_length, embedding_size]
        '''W(X)相当于在(16,2)的嵌入矩阵W中,给X中的6*3个单词,每个输出一个长度为2的嵌入向量(不去重)'''
        '''构建真正的嵌入矩阵(按序,不去重)'''
        embedded_inputs = self.W(X) # W(16,2) X(6,3) ->  W(X)[6,3,2]
        '''unsqueeze(dim):升维 
        unsqueeze(dim)对于1维向量不起作用;同样的,squeeze(dim)也只对一维矩阵起作用:
        例如(3,1) -> squeeze(1) -> (3,)
        Args:
            dim (int): dim表示新维度的位置
        Examples:
            >>> a = torch.ones(3,4)
            >>> a.shape
            (3,4)
            >>> a.unsqueeze(0).shape 
            (1,3,4)
            >>> a.unsqueeze(1).shape 
            (3,1,4)
            >>> a.unsqueeze(2).shape 
            (3,4,1)
        '''
        # add input_channel(层数)(=1) 
        # [batch, input_channel(层数)(=1), sequence_length, embedding_size]
        embedded_inputs = embedded_inputs.unsqueeze(1) # [6,1,3,2]

        """3-2.卷积层"""
        pooled_outputs = []
        # 遍历卷积核
        for i, conv in enumerate(self.filter_list): 
            '''Conv2d(embedded_inputs) 二维卷积计算
            Conv2d:[卷积核输入通道数(层数), 卷积核输出通道数, (卷积核宽度, 嵌入向量维度)] # (1,4,2,2)
            1.卷积核输入通道数即卷积时的层数,必须等于图像的通道数(层数)
            2.卷积核输出通道数即代表有几个卷积核叠加
            Args:
                embedded_inputs (array): [样本数, 卷积核输入通道数(层数), 样本单词数, 嵌入向量长度] # [6,1,3,2]
            Returns:
                [样本数, 卷积核输出通道数, (样本单词数-卷积核宽度+1, 1)] # [6,4,2,1]
            '''
            '''F.relu(input) relu激活函数
            Args:
                input (totch.Tensor): 输入,必须是张量
            Returns:
                a tensor (shape不变,对input中每个数进行relu计算)
            '''
            # conv:(1,4,2,2) & embedded_inputs:[6,1,3,2]  ->  [6,4,2,1]  
            '''6个样本,每个样本的嵌入向量矩阵大小为(3,2),层数为1;卷积核大小(2,2),层数也为1,输出通道为4'''
            embedded_outputs = conv(embedded_inputs) # [6,4,2,1]
            embedded_outputs = F.relu(embedded_outputs) # [6,4,2,1]

            """3-3.池化层"""
            '''nn.MaxPool2d(kernel_size)
            最大时间汇聚(池化)层在所有输出通道上执行MaxPool(相当于在一个通道上的所有词元中选择最大值),给出了一个宽度的4+5=9的一维向量
            Args:
                kernel_size (tuple): 池化的窗口大小 
                # (样本单词数-卷积核宽度+1, 1) 必须与嵌入层输出的大小一样
            Returns:
                An one-dimensional tensor # (样本单词数-卷积核宽度+1, 1)
            '''  
            maxpool = nn.MaxPool2d((self.sequence_length-self.filter_sizes[i]+1, 1)) # (2,1)
            pooled = maxpool(embedded_outputs) # [样本数, 卷积核输出通道数, 1, 1] # [6,4,1,1]
            pooled_outputs.append(pooled)

        '''torch.cat(tensor_list, dim) 把tensor_list列表中的张量在第dim维进行拼接'''
        # [batch_size(=6), output_channel(=4)*3, output_height(=1), output_width(=1)]
        pooled_output = torch.cat(pooled_outputs, 1) # dim = 1
        # print(pooled_output.shape) # [6,4,1,12]
        '''6个样本: 1个样本3个卷积核,每个核4个输出通道,总共12个输出通道'''
        pooled_output_flat = torch.reshape(pooled_output, [-1, self.num_filters_total]) # [6,12]
        # print(pooled_output_flat.shape) # [6,12]
        # [batch_size, num_classes]
    
        """3-4.输出层"""
        output = self.Weight(pooled_output_flat) + self.Bias 
        # output : tensor([[1.1522, 1.2147]], grad_fn=<AddBackward0>)
        return output

# num_channels, filter_sizes, vocab_size, embedding_size, sequence_length
if __name__ == '__main__':
    '''本文没有用随机采样法,因此也就没有random_batch(),batch_size就等于样本数'''
    device = ['cuda:0' if torch.cuda.is_available() else 'cpu'][0]
    embedding_size = 2  # 嵌入矩阵大小,即样本特征数,即嵌入向量的"长度"
    num_classes = 2  # 情感类别数
    # 卷积核宽度(即上下文词距) len(filter_sizes)即代表卷积核数量
    filter_sizes = [2, 2, 2] # n-gram windows
    num_channels = 4  # number of filters 卷积核输出通道数
    sentences = ["i love you", "he loves me", "she likes baseball",
                 "i hate you", "sorry for that", "this is awful"]
    labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

    '''1.数据预处理'''
    word_sequence, word_list, word_dict, \
    vocab_size, sentences, sequence_length = pre_process(sentences)
    inputs, targets = make_batch(sentences)

    '''2.构建模型'''
    # 设置模型参数
    model = TextCNN()
    model.to(device)
    criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
    optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam动量梯度下降法
    
    if os.path.exists('model_param.pt') == True:
        # 加载模型参数到模型结构
        model.load_state_dict(torch.load('model_param.pt', map_location=device))
    
    '''3.训练'''
    print('{}\nTrain\n{}'.format('*'*30, '*'*30))
    loss_record = []
    for epoch in range(1000):
        optimizer.zero_grad() # 把梯度置零,即把loss关于weight的导数变成0
        output = model(inputs)
        # output : [batch_size, num_classes]
        # targets: [batch_size,] (LongTensor, not one-hot)
        loss = criterion(output, targets) # 将输出与真实目标值对比,得到损失值
        loss.backward() # 将损失loss向输入侧进行反向传播,梯度累计
        optimizer.step() # 根据优化器对W、b和WT、bT等参数进行更新(例如Adam和SGD)

        if loss >= 0.01: # 连续30轮loss小于0.01则提前结束训练
            loss_record = []
        else:
            loss_record.append(loss.item())
            if len(loss_record) == 30:
                torch.save(model.state_dict(), 'model_param.pt')
                break    

        if ((epoch+1) % 100 == 0):
            print('Epoch:', '%04d' % (epoch + 1), 'Loss = {:.6f}'.format(loss))
            torch.save(model.state_dict(), 'model_param.pt')

    '''4.预测'''
    print('{}\nTest\n{}'.format('*'*30, '*'*30))
    test_text = 'sorry hate you'
    test_words = test_text.split()
    tests = [np.array([word_dict[word] for word in test_words])]
    tests = np.array(tests)
    test_batch = torch.LongTensor(tests)
    test_batch = test_batch.to(device)
    # Predict
    # print(result) 
    # result : tensor([[1.1522, 1.2147]], grad_fn=<AddBackward0>)
    '''result的两个值分别代表类别0和类别1'''
    result = model(test_batch)
    '''torch.tensor.data.max(dim,keepdim) 用于找概率最大的输出值及其索引
    Args:
        dim (int): 在哪一个维度求最大值
        keepdim (Boolean): 保持维度. 
            keepdim=True:当tensor维度>1时,得到的索引和输出值仍然保持原来的维度
            keepdim=False:当tensor维度>1时,得到的索引和输出值为1维
    '''
    predict = result.data.max(1, keepdim=True)
    predict = predict[1] # 索引
    print(test_text+" : %d" % predict[0][0])
    
  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
                《人工智能:深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从零实现线性回归-103.4-实验04-从零实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从零实现Softmax回归-104.4-实验07-从零实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机与神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从零实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从零实现循环神经网络-113.09-实验32-从零实现循环神经网络-213.10-实验32-从零实现循环神经网络-313.11-实验32-从零实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值