在上篇文章「初探动态规划」里面,我提到要写好动态规划需要先写好递归,今天就再谈谈怎么写好递归。
为什么要写好递归?写递归符合动态规划的原理,同时也容易被人理解。那么该怎么写好这个递归呢?大量的实战练习,直接上例题。
- 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
题目分析
题干给的是一个整数数组,那么就有正有负,这点很关键,如果没有负数,这道题就根本不用想,直接数组求和。
直接思路就是遍历搜索,用一个变量存储最大值,需要两个索引,一个指向子数组的开头,一个指向子数组的结尾,算出子数组的值和最大值比较并且决定是否更新。
第一波思路就这么简单粗暴,随后再优化。
public static int maxSubArray(int[] nums) {
return solve(0, 0, nums);
}
public static int solve(int start, int end, int[] nums) {
if (start > end) {
// 这里是为了方便表示,实际不能这样写,如果返回加了一个负数,会直接越界变成一个超级大的正数
return Integer.MIN_VALUE;
}
if (start > nums.length - 1) {
return Integer.MIN_VALUE;
}
if (end > nums.length - 1) {
return Integer.MIN_VALUE;
}
int total = 0;
// 计算子数组和
for (int i = start; i <= end; i++) {
total += nums[i];
}
//end 朝后移动一位
int b = solve(start, end + 1, nums);
//start 朝后移动一位
int a = solve(start + 1, end, nums);
// 取三者最大值返回
total = Math.max(total, a);
total = Math.max(total, b);
return total;
}
虽然这个时间复杂度不敢恭维,但思路简单明了易于理解,这种算法是肯定不行得,在 LeetCode 上面会超时。
即使加一个 dp[start][end] 的辅助空间用记忆搜索也还是会超时,因为在 LeetCode 会给你一个超级大的数组求和,数组大到我 QQ 消息一次都发不完的那种。然而正向递推(for)初始条件那块,一直没有弄好,所以不能靠这种方式通过。
这个时候应该想想递归还能不能优化,这种方式的递归太简单粗暴了,能不能换一种柔和一点的递归,比如一个索引的递归?回归问题本身,子数组最大的和这个问题。
刚才两个索引的方案已经被放弃了,那么一个索引应该怎么存储呢?划重点:如果当前值比之前累加的值大,那么之前的累加值可以直接放弃,重新开始累加。好好体会这句话,这句话就可以把索引从两个变成一个。
public static int max = 0;
public static int maxSubArray(int[] nums) {
max = nums[nums.length - 1];
solve(nums.length - 1, nums[nums.length - 1], nums);
return max;
}
public static int solve(int index, int total, int[] nums) {
if (index < 0) {
return -100000;
}
// 比较当前值和之前的积累
total = Math.max(nums[index] + solve(index - 1, total, nums), nums[index]);
// 始终存储最大的那个值
max = Math.max(max, total);
return total;
}
这个版本的递归肯定还是过不了测试,但这样子的记忆搜索已经可以过所有测试用例了。
回顾整个过程,同样一道题,不同的思考方式带来的不同递归方式,虽然都能算出答案,但这个过程明显不一样,而这就是动态规划需要学习的地方,优化,优化,再优化。
这两篇自我感觉写得很没有水准,个人原因占大部分,我对动态规划远远没有到得心应手的地步,思维出现了断层,不成体系。
欢迎大家关注我的微信公众号:卡戎。