目前只写了叠加性部分,齐次性、定常时变类似(之后补)
如果不是微分方程中含有积分,那么两边微分/求导消去积分
线性系统
线性系统有两个重要的特性:叠加性和齐次性。
叠加性
定义
当系统同时存在几个输入量时,其输出量等于各输入量单独作用时所引起的输出量的和。
即当
r
(
t
)
=
∑
r
i
(
t
)
r(t)=\sum{r_i(t)}
r(t)=∑ri(t)时,微分方程的解为
c
(
t
)
=
∑
c
i
(
t
)
c(t)=\sum{c_i(t)}
c(t)=∑ci(t),这就是叠加性。
判断方法
- 设各输入量 c i ( t ) c_i(t) ci(t)分别代入微分方程中时,输出量分别为 r i ( t ) r_i(t) ri(t)(证明的时候取两个就可以了)
- 将各分量的微分方程相加,不管是否线性,等式都成立(式一)
- 将输入 c ( t ) = ∑ c i ( t ) c(t)=\sum{c_i(t)} c(t)=∑ci(t)代入微分方程,如果满足叠加性,其输出量应为单独作用时所引起的输出量的和,即同时将 r ( t ) = ∑ r i ( t ) r(t)=\sum{r_i(t)} r(t)=∑ri(t)代入微分方程中,等式应成立(式二)
式一是一定成立的,用于证明或者证伪式二。若能证明式二成立,则说明该系统满足叠加性,反之不满足。
例题
例1:c(t)为输入,r(t)为输出,系统的微分方程为
t
d
c
(
t
)
d
t
+
c
(
t
)
=
r
(
t
)
+
3
d
r
(
t
)
d
t
t\frac{dc(t)}{dt}+c(t)=r(t)+3\frac{dr(t)}{dt}
tdtdc(t)+c(t)=r(t)+3dtdr(t).
解: 假设两个输入量
c
1
(
t
)
,
c
2
(
t
)
c_1(t),c_2(t)
c1(t),c2(t)分别作用于系统,则由系统的微分方程,分别有
t
d
c
1
(
t
)
d
t
+
c
1
(
t
)
=
r
1
(
t
)
+
3
d
r
1
(
t
)
d
t
①
t\frac{dc_1(t)}{dt}+c_1(t)=r_1(t)+3\frac{dr_1(t)}{dt} \ \ ①
tdtdc1(t)+c1(t)=r1(t)+3dtdr1(t) ①
t
d
c
2
(
t
)
d
t
+
c
2
(
t
)
=
r
2
(
t
)
+
3
d
r
2
(
t
)
d
t
②
t\frac{dc_2(t)}{dt}+c_2(t)=r_2(t)+3\frac{dr_2(t)}{dt} \ \ ②
tdtdc2(t)+c2(t)=r2(t)+3dtdr2(t) ②
当
c
1
(
t
)
+
c
2
(
t
)
c_1(t)+c_2(t)
c1(t)+c2(t)同时作用于系统时,假设系统满足叠加性,应有
t
d
(
c
1
(
t
)
+
c
2
(
t
)
)
d
t
+
c
1
(
t
)
+
c
2
(
t
)
=
r
1
(
t
)
+
r
2
(
t
)
+
3
d
(
r
1
(
t
)
+
r
2
(
t
)
)
d
t
③
(
式
二
)
t\frac{d(c_1(t)+c_2(t))}{dt}+c_1(t)+c_2(t)=r_1(t)+r_2(t)+3\frac{d(r_1(t)+r_2(t))}{dt} \ \ ③(式二)
tdtd(c1(t)+c2(t))+c1(t)+c2(t)=r1(t)+r2(t)+3dtd(r1(t)+r2(t)) ③(式二)
①+②得
t
d
(
c
1
(
t
)
+
c
2
(
t
)
)
d
t
+
c
1
(
t
)
+
c
2
(
t
)
=
r
1
(
t
)
+
r
2
(
t
)
+
3
d
(
r
1
(
t
)
+
r
2
(
t
)
)
d
t
④
(
式
一
)
t\frac{d(c_1(t)+c_2(t))}{dt}+c_1(t)+c_2(t)=r_1(t)+r_2(t)+3\frac{d(r_1(t)+r_2(t))}{dt} \ \ ④(式一)
tdtd(c1(t)+c2(t))+c1(t)+c2(t)=r1(t)+r2(t)+3dtd(r1(t)+r2(t)) ④(式一)
可见③(式二)成立,所以假设成立,系统满足叠加性
若不满足叠加性,结论如下
可见④与③矛盾,故系统不满足叠加性
齐次性
定义
当输入量增大或缩小k (k为实数)倍时,系统输出量也按同一倍数增大或缩小。
即当
r
(
t
)
=
k
r
1
(
t
)
r(t)=kr_1(t)
r(t)=kr1(t)时(k为常数实数),微分方程的解为
c
(
t
)
=
k
c
1
(
t
)
c(t)=kc_1(t)
c(t)=kc1(t).
判断方法
还没写
例题
还没写
非线性系统
在构成系统的环节中有一个或一个以上的非线性环节时,则称此系统为非线性系统。典型的非线性特性有饱和特性、死区特性、间隙特性、继电特性、磁滞特性等。
定常系统
如果系统中参数不随时间变化,则这类系统称为定常系统。在实践中遇到的系统,大多数属于这一类。
线性定常系统
如果一个线性系统微分方程的系数为常数,
那么系统称为线性定常系统。
例如:
d
2
c
(
t
)
d
t
2
+
2
d
c
(
t
)
d
t
+
x
(
t
)
=
r
(
t
)
\frac{d^2c(t)}{dt^2}+2\frac{dc(t)}{dt}+x(t)=r(t)
dt2d2c(t)+2dtdc(t)+x(t)=r(t)
时变系统
如果系统中的参数是时间t的函数,则这类系统称为时变系统。
线性时变系统
如果一个线性系统微分方程的系数为时间的函数,
那么系统称为线性时变系统。
例如:
d
2
c
(
t
)
d
t
2
+
2
t
d
c
(
t
)
d
t
+
x
(
t
)
=
r
(
t
)
\frac{d^2c(t)}{dt^2}+2t\frac{dc(t)}{dt}+x(t)=r(t)
dt2d2c(t)+2tdtdc(t)+x(t)=r(t)
参考老师上课内容以及网上课件https://www.docin.com/p-107264184.html
如果觉得我写的内容太烂,请点个踩或者评论和“垃圾”,或者说出改进的点