模板题——KMP Trie树 并查集

1.KMP算法模板

#include <bits/stdc++.h>

using namespace std;
const int N=100010,M=1000010;
char p[N],s[M];
int ne[N];
int main()
{
    int m,n;
    cin>>n>>p+1>>m>>s+1;
    for(int i=2,j=0;i<=n;i++)
    {
        while(j&&p[i]!=p[j+1]) j=ne[j];
        if(p[i]==p[j+1]) j++;
        ne[i]=j;
    }
    for(int i=1,j=0;i<=m;i++)
    {
        while(j&&s[i]!=p[j+1]) j=ne[j];
        if(s[i]==p[j+1]) j++;
        if(j==n)
        {
            printf("%d ",i-j);
            j=ne[j];
        }
    }
    return 0;
}

2.Trie树:高效地存储和查找字符串集合的数据结构

#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int idx,son[N][26],cnt[N];
char str[N];
void insertt(char str[])
{
    int p=0;//开始指向根节点
    for(int i=0;str[i];i++)
    {
        int u=str[i]-'a';
        if(!son[p][u]) son[p][u]=++idx;//没有这个分支就创建出来
        p=son[p][u];//p指向刚创建出来的新指针
    }
    cnt[p]++;//以p结尾的单词数+1
}
int query(char str[])
{
    int p=0;
    for(int i=0;str[i];i++)
    {
        int u=str[i]-'a';
        if(!son[p][u]) return 0;
        p=son[p][u];
    }
    return cnt[p];
}
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        char op[2];
        scanf("%s%s",op,str);
        if(op[0]=='I') insertt(str);
        else printf("%d\n",query(str));
    }
    return 0;
}

最大异或对

#include <bits/stdc++.h>

using namespace std;
const int N=100010,M=31*N;
int a[N];
int idx,son[M][2];
void inserrt(int x)
{
    int p=0;
    for(int i=30;i>=0;i--)
    {
        int u=x>>i&1;
        if(!son[p][u]) son[p][u]=++idx;
        p=son[p][u];
    }
}
int query(int x)
{
    int p=0,res=0;
    for(int i=30;i>=0;i--)
    {
        int u=x>>i&1;
        if(son[p][!u])
        {
            p=son[p][!u];
            res=res*2+!u;
        }
        else
        {
            p=son[p][u];
            res=res*2+u;
        }
    }
    return res;
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    int res=0;
    for(int i=0;i<n;i++)
    {
        inserrt(a[i]);
        int t=query(a[i]);
        res=max(res,a[i]^t);
    }
    printf("%d\n",res);
    return 0;
}

3.并查集:将两个集合合并或者询问两个数是否在一个集合中

基本原理:每个集合用一棵树表示,树根的编号就是集合的编号,每个节点存储他的父节点,p[x]表示x 的父节点
如何判断根节点:p[x]=x;
如何求x的集合编号:while(x!=p[x]) x=p[x];
如何合并两个集合:p[x]是x集合编号,p[y]是y集合编号,p[x]=y;

#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int p[N];
int findd(int x)//返回x的祖宗节点+路径压缩
{
    if(p[x]!=x) p[x]=findd(p[x]);
    return p[x];
}
int main()
{
    int n,m,a,b;
    char op[2];
    cin>>n>>m;
    for(int i=1;i<=n;i++) p[i]=i;
    while(m--)
    {
        scanf("%s%d%d",&op,&a,&b);
        if(op[0]=='M')
        {
            p[findd(a)]=findd(b);
        }
        else
        {
            if(findd(a)==findd(b)) puts("Yes");
            else puts("No");
        }
    }
    return 0;
}

连通块中点的数量

#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int p[N],sizee[N];
int findd(int x)//返回x的祖宗节点+路径压缩
{
    if(p[x]!=x) p[x]=findd(p[x]);
    return p[x];
}
int main()
{
    int n,m,a,b;
    char op[2];
    cin>>n>>m;
    for(int i=1;i<=n;i++) {p[i]=i;sizee[i]=1;}
    while(m--)
    {
        scanf("%s",op);
        if(op[0]=='C')
        {
            scanf("%d%d",&a,&b);
            if(findd(a)==findd(b)) continue;
            sizee[findd(b)]+=sizee[findd(a)];
            p[findd(a)]=findd(b);
        }
        else if(op[1]=='1')
        {
            scanf("%d%d",&a,&b);
            if(findd(a)==findd(b)) puts("Yes");
            else puts("No");
        }
        else
        {
            scanf("%d",&a);
            printf("%d\n",sizee[findd(a)]);
        }
    }
    return 0;
}

食物链——>妙啊

#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int d[N],p[N];
int findd(int x)//找根节点
{
    if(p[x]!=x)//如果x不是根节点
    {
        int t=findd(p[x]);//t位p[x]的根节点
        d[x]+=d[p[x]];//x到根节点的距离
        p[x]=t;//p[x]成为根节点
    }
    return p[x];
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) p[i]=i;
    int res=0;
    while(m--)
    {
        int x,y,t;
        scanf("%d%d%d",&t,&x,&y);
        if(x>n||y>n) res++;
        else
        {
            int px=findd(x),py=findd(y);
            if(t==1)
            {
                if(px==py&&(d[x]-d[y])%3!=0) res++;//xy在一个集合并且不是一类-》模3的余数不相同
                else if(px!=py)//不在同一个集合上
                {
                    p[px]=py;
                    d[px]=d[y]-d[x];
                }
            }
            else
            {
                if(px==py&&(d[x]-d[y]-1)%3!=0) res++;
                else if (px!=py)
                {
                    p[px]=py;
                    d[px]=d[y]+1-d[x];
                }
            }
        }
    }
    printf("%d\n",res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值