以下是自然语言处理在跨语言语义理解方面的一些新的创新思路:
**一、基于多语言预训练模型的改进**
1. **多语言语义空间的精细化构建**
- **语义角色感知的预训练**:
- 在多语言预训练模型中融入语义角色标注任务。例如,在预训练过程中,对于不同语言的句子,同时标注出主语、谓语、宾语等语义角色。这样可以使模型在学习不同语言的语义表示时,更加关注句子内部的语义结构关系。以“John loves Mary”(英语)和“Juan ama a María”(西班牙语)为例,模型通过学习语义角色标注,能够更好地理解“John/Juan”(施事者)、“loves/ama”(动作)和“Mary/María”(受事者)在不同语言中的语义关系,从而构建更精确的跨语言语义空间。
- **语义层次结构的预训练**:
- 考虑语言的语义层次结构进行预训练。不同语言在表达语义时,可能有不同的层次结构。例如,一些语言可能更倾向于用词汇的组合来表达复杂概念,而另一些语言可能有更丰富的词缀系统。可以设计预训练任务,让模型学习不同语言的语义层次结构。例如,对于汉语这种缺乏词形变化的语言和俄语这种有丰富词形变化的语言,通过分析和学习它们在语义表达上的层次差异,使模型能够在跨语言语义理解中更好地处理语义的转换和对齐。