## 一、当医学影像遇上小样本困境
在放射科诊室里,张医生正面对一个棘手病例:患者的肺部CT显示出罕见病变特征。传统AI系统需要数千例类似病例才能给出可靠判断,但这次数据库里仅有3个相似病例。这就是医疗AI落地的典型困境——小样本学习与模型可信度的双重挑战。

传统深度学习在医学影像分析中存在两大痛点:
1. 需要海量标注数据(ImageNet量级)
2. 模型决策过程不透明(黑箱问题)
本文我们将攻克这两个难题,通过创新性的元学习框架与可视化技术,实现只需20张训练样本即可完成可靠诊断,并让模型自己"说出"诊断依据。
## 二、解构可解释小样本学习模型
### 2.1 整体架构设计
我们提出Proto-CAM模型,融合了:
- 原型网络(小样本学习)
- 梯度类激活图(可解释性)
- 注意力机制(特征增强)
```python
class ProtoCAM(nn.Module):
def __init__(self, backbone, num_prototypes):
super().__init__()