二、递推算法

特点:

一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。

EQ1:
数字三角形。编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。
  1、 一步可沿左斜线向下或右斜线向下走;
  2、 三角形行数小于等于100;
  3、 三角形中的数字为0,1,…,99;
  在这里插入图片描述
【算法分析】
  此题解法有多种,从递推的思想出发,设想,当从顶层沿某条路径走到第i层向第i+1层前进时,我们的选择一定是沿其下两条可行路径中最大数字的方向前进,为此,我们可以采用倒推的手法,设a[i][j]存放从i,j 出发到达n层的最大值,则a[i][j]=max{a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]},a[1][1] 即为所求的数字总和的最大值。

#include<iostream>
using namespace std;
int main()
{
  int n,i,j,a[101][101];
  cin>>n;
  for (i=1;i<=n;i++)
   for (j=1;j<=i;j++)
     cin>>a[i][j];                             //输入数字三角形的值
  for (i=n-1;i>=1;i--)
   for (j=1;j<=i;j++)
     {
       if (a[i+1][j]>=a[i+1][j+1])  a[i][j]+=a[i+1][j];     //路径选择
       else  a[i][j]+=a[i+1][j+1];
     } 
  cout<<a[1][1]<<endl; 
}

EQ2:
满足F1=F2=1,Fn=Fn-1+Fn-2的数列称为斐波那契数列(Fibonacci),它的前若干项是1,1,2,3,5,8,13,21,34……求此数 列第n项(n>=3)。

#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
    int f0=1,f1=1,f2;
    int n;
    cin>>n;
    for(int i=3;i<=n ++i)
    {
         f2=f0+f1;
         f0=f1;
         f1=f2;
    }
    printf("%d\n",f2);
    return 0;
}

EQ3:
走台阶,一级或两级走,N台阶多少种走法。

#include<iostream>
using namespace std;

int Fbi(int i)
 {
    if(i==1)return 1;
    if(i==2)return 2;
    else return Fbi(i-1)+Fbi(i-2);
 }

 int main()
 { int n;
  while(cin>>n)
  {
      cout<<Fbi(n)<<endl;
  }

 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值