图像模糊

图像模糊是一种常用的图像处理操作,用于降低噪声和平滑图像。本文介绍了四种滤波方法:均值滤波通过算子内像素的平均值替换目标像素;高斯滤波利用高斯权重对像素值加权计算,保留图像特征;中值滤波通过排序并取中值来平滑椒盐噪声;双边滤波则在去噪的同时尽量保持边缘信息。每种滤波器都有其特定的应用场景和API调用方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像模糊(Blur),是图像处理中简单且常用的操作之一,该操作可以降低图像噪声,使图像平滑。
操作背后的原理是数学的卷积计算,通常这些卷积算子计算都是线性操作,所以又叫线性滤波。
在这里插入图片描述
一、归一化盒子滤波(均值滤波)

  1. 说明:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,一般把该模板称为算子,该算子包括了其周围的临近像素(假设算子大小为 3*3,以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值,即:1/n * ∑(i, j)
    在这里插入图片描述

  2. 特点:对椒盐噪声基本无能为力。

  3. 均值滤波API:

void blur(Mat src,Mat dst, Size(xradius,yradius), Point(-1, -1))
//例:blur(src, dst, Size(5,5), Point(-1, -1));

二、高斯滤波

  1. 说明:应用高斯分布(正态分布),对像素值进行加权计算。
    高斯函数为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值