索引的分类


索引是在存储引擎中实现的,不同的存储引擎会使用不同的索引。

  • MyISAM 和 InnoDB 只支持BTree索引
  • MEMORY 和 HEAP 支持hash索引和Btree索引

索引分为四类

  1. 单列索引(普通索引,唯一索引,主键索引)
    普通索引:没什么限制,允许插入空值和重复值
    唯一索引:不允许重复值,允许空值
    主键索引:不允许空值,不允许重复值
  2. 组合索引(联合索引)
    遵循最左前缀原则
    eg:(a,b,c)创建索引,共有(a),(a,b),(a,b,c)三种索引
  3. 全文索引
    InnoDB,MyISAM引擎都能用,只能在CHAR,VARCHAR,TEXT类型的字段上加该索引。主要用来查找文本中的关键字,而不是直接与字段值进行比较,全文索引需要配合match against使用,而不是一般的where like…
  4. 空间索引
    是对空间数据类型的字段建立的索引,空间索引的列必须是not null,只有MyISAM支持该索引

索引在MySQL中的分类

  • B+树索引
  • Hash索引
  • 全文索引

B树

因为内存的易失性,一般情况下,都会将表中的数据和索引存储在磁盘这种外围设备中,但是和内存相比,从磁盘中读取数据的速度会慢上千倍,从磁盘中读取数据都是按照磁盘块来读,并不是一条一条的读。
如果能尽量的把更多的数据放进磁盘里,那么一次读取就能获取更多数据,但是二叉树每个节点就存储一个键值对,如果用这种结构存储,那么每次读取一个键盘只能读到一个键值对,如果存储海量数据,占用磁盘过多,效率过慢。
为了解决这个弊端,创建了B树,B树是一个节点可以存储多个键值对的平衡树。
在这里插入图片描述

图中每个节点称为页,也就是磁盘块,在MySQL中读取的基本单位都是页。
假如要查找id=9 的数据:
1、先找到根节点,发现9小于17,根据指针P1,找到页2
2、将9和页2中的数据进行标胶发现9在8和12之间,根据P2找到页6
3、将9和页6中的键值进行比较,找到(9,ac)

B+树

B+树 和 B树的区别
1、B+树非叶子节点是不存储数据的,仅存储键值,因为数据库中页的大小是固定的,InnoDB默认是16k,如果不存储数据,就会存储更多的键值,另外,B+树的阶数等于键值的数量,如果B+树的一个节点可以存储1000个键值,那么三层的B+树可以存储100010001000 = 10亿个数据。
一般节点是常驻内存的,所以一般查找10亿数据只需要两次IO。
2、B+树的所有数据都存储在叶子节点,而且数据时按照顺序排列的,这就使得B+树的范围查找,排序查找,分组查找,以及去重查找变得简单。
在这里插入图片描述

B+树各个页之间通过双向链表连接的,叶子节点之间数据通过单向链表连接的,通过这些连接可以找到表中所有数据。

聚集索引和非聚集索引

  • 聚集索引:
    以InnoDB作为存储引擎的表,即使你不创建主键,系统也会帮你创建一个隐式的主键。因为InnoDB把数据存放在B+树中,而B+树的键值就是主键。这种以主键作为键值而构建的B+树索引称为聚集索引。

  • 非聚集索引:
    以主键之外的列值作为键值构建的B+树索引。与聚集索引的区别在于,叶子节点不存储表中的数据,而是存储该列对应的主键,想要查询数据还需要根据主键再去聚集索引中查找,称之为回表
    叶子节点存储结构:
    在这里插入图片描述
    非聚集索引不一定进行回表操作,如果查询的字段全部命中了索引,就不必进行回表操作。
    eg:select age from user where age<20
    在索引上已经包含了age信息,不需要回表查询。

Hash索引

利用哈希函数h(k)计算出元素的位置
在这里插入图片描述
Hash索引的检索效率很高,索引的减速偶可以一次定位,不像B树索引需要从根节点到枝节点经过多次IO。
Hash索引缺点:
1、Hash只支持等值比较查询,如 = ,IN,<=>。不支持任何范围查询,因为Hash索引比较的值是经过hash运算之后的值,这些值的大小并不能保证和Hash运算之前完全一样。
2、Hash也无法进行排序操作,原因同上。
3、Hash索引在任何时候都不能避免表扫描,由于不同索引键存在相同hash值,所以即使满足某个hash值,也无法完成直接查询,而是要访问表中的数据进行比较。
4.不支持联合索引最左匹配原则。

MySQL中InnoDB和MyISAM的区别

  • InnoDB支持事务,MyISAM不支持
  • InnoDB支持外检,MyISAM不支持
  • InnoDB是聚集索引,MyISAM是非聚集索引
  • InnoDB不支持全文索引,MyISAM支持

MySQL中存在索引但是不被使用的情况

1、用“or”分隔开的两个条件,如果有一个条件没有索引,则不会使用索引
2、如果like以“%”开头,则不会使用索引
3、如果列类型为字符串,则where条件中该常量值必须加引号,否则索引不起作用
4、对索引列进行数学运算或者函数,索引不起作用
eg:select * from … where id-1=9
select * from … round(id) = 10

根据给出的引用资料,MySQL索引可以按照四个角度进行分类。首先,按照数据结构可以分为B tree索引、Hash索引和Full-text索引。其次,按照物理存储可以分为聚簇索引(主键索引)和二级索引(辅助索引)。接着,按照字段特性可以分为主键索引、唯一索引、普通索引和前缀索引。最后,按照字段个数可以分为单列索引和联合索引(复合索引、组合索引)。组合索引也被称为复合索引或多列索引,它将多个列共同组成一个索引,可以通过这几个字段进行查询,但是只有在查询条件中使用了这些字段中的第一个字段时,索引才会被使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [mysql索引分类](https://blog.csdn.net/kking_edc/article/details/130795723)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [MySQL索引分类](https://blog.csdn.net/qq_38785977/article/details/126809064)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [MySQL - 索引类型详解](https://blog.csdn.net/weixin_42201180/article/details/125769741)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值