小兔的棋盘
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9317 Accepted Submission(s): 4831
Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1
3
12
-1
Sample Output
1 1 2
2 3 10
3 12 416024
这题目一看就是卡特兰数了
达到(n,n)的最短路 其实就是从(0,0)出发 每一步只向下和向右走的方案数
直接套卡特兰数通项公式C(2n,n)/(n+1) O(n)复杂度 但是实践发现把unsigned long long都爆掉了
所以只能递推求解 O(n^2)复杂度
d[i][j]为到达棋盘(i,j)的最短路方案数
明显 d[i][j]=d[i-1][j]+d[i][j-1]
也可以用卡特兰数公式
h(0)=h(1)=1
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + … + h(n-1)h(0) (n>=2)
同样是O(n^2)复杂度
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
#include<bitset>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
ull d[36][36];
void catalan(){
d[0][0]=1;
for(int i=1;i<=35;++i){
d[i][0]=1;
for(int j=1;j<=i;++j)
d[i][j]=d[i-1][j]+d[i][j-1];
}
}
int main()
{
//freopen("/home/lu/文档/r.txt","r",stdin);
//freopen("/home/lu/文档/w.txt","w",stdout);
int n;
catalan();
for(int i=1;cin>>n&&n!=-1;++i)
cout<<i<<' '<<n<<' '<<d[n][n]*2<<endl;
return 0;
}