51NOD 1625 夹克爷发红包 枚举+贪心

本文介绍了一种在特定场景下优化红包派发策略的方法。在该场景中,互联网巨头公司的掌门人在公司年会上向现场观众派发普通及高级红包,通过算法确定最佳派发策略以实现红包总金额最大化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1625 夹克爷发红包
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏  关注
在公司年会上,做为互联网巨头51nod掌门人的夹克老爷当然不会放过任何发红包的机会。

现场有n排m列观众,夹克老爷会为每一名观众送出普通现金红包,每个红包内金额随机。

接下来,夹克老爷又送出最多k组高级红包,每组高级红包会同时给一排或一列的人派发 ,每个高级红包的金额皆为x。

派发高级红包时,普通红包将会强制收回。同时,每个人只能得到一个高级红包。(好小气!)

现在求一种派发高级红包的策略,使得现场观众获得的红包总金额最大。
Input
第一行为n, m, x, k四个整数。

1 <= n <= 10, 1 <= m <= 200
1 <= x <= 10^90 <= k <= n + m

接下来为一个n * m的矩阵,代表每个观众获得的普通红包的金额。普通红包的金额取值范围为1 <= y <= 10^9
Output
输出一个整数,代表现场观众能获得的最大红包总金额
Input示例
3 4 1 5
10 5 7 2
10 5 10 8
3 9 5 4
Output示例
78
Wizmann (题目提供者)

不难发现 二维数组 贪心并不能保证正确
题目突破口在n<=10
如果枚举每行是否被发高级红包 最多也只是2^10=1024种情况
然后 就在剩下的一维里用贪心 取换成高级红包能加最多钱的k列
每次贪心需要 O(n*m + m*log(m))
总复杂度O(n*m * 2^n)

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
#include<queue>
#include<sstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

const int N = 12;
const int M = 202;
int pre[N][M];
int now[N][M];
int n,m,x,k;

ll add[M];
ll greed(int k_){
    for(int c=0;c<m;++c){//每列换成高级红包 可以增加多少钱
        add[c]=0;
        for(int r=0;r<n;++r){
            add[c]+=x-now[r][c];
        }
    }
    sort(add,add+m,greater<ll>());
    ll ans=0;
    for(int i=0;i<k_;++i){
        if(add[i]>0){
            ans+=add[i];
        }
        else{
            break;
        }
    }
    return ans;
}

ll slove(){
    ll ans=0;
    for(int i=0,end=1<<n;i<end;++i){//枚举行的状态 i的第flag位为1 表示第flag行被发高级红包
        ll t=0;//发了use行高级红包 一共有多少钱
        int use=0,flag=1;//use 发了多少行

        for(int r=0;r<n;++r){
            bool tmp=i&flag;//这行有没有发高级红包
            use+=tmp;
            if(use>k){//超过k组了
                break;
            }
            for(int c=0;c<m;++c){
                now[r][c]=tmp?x:pre[r][c];
                t+=now[r][c];
            }
            flag<<=1;
        }

        if(use<=k){
            ans = max(ans,t+greed(min(k-use,m)));
        }
    }
    return ans;
}

int main()
{
    //freopen("/home/lu/Documents/r.txt","r",stdin);
    //freopen("/home/lu/Documents/w.txt","w",stdout);
    scanf("%d%d%d%d",&n,&m,&x,&k);
    for(int i=0;i<n;++i){
        for(int j=0;j<m;++j){
            scanf("%d",&pre[i][j]);
        }
    }
    printf("%lld\n",slove());
    return 0;
}
### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值