数据结构——线段树的基本操作

线段树是一种基于分治思想的二叉树数据结构,适用于区间信息统计。本文介绍了线段树的性质,包括节点表示的区间、建树、单点修改、区间查询及延迟标记等基本操作,并通过一个区间加法操作的例题进行实践解析。
摘要由CSDN通过智能技术生成

线段树!

 线段树(Segment Tree)是一种基于分治思想的二叉树结构,用于解决区间上的信息统计。与树状数组相比,线段树是一种超级多元化的数据结构。

线段树的性质:

 1.线段树的每一个节点都代表一个区间。
 2.线段树具有唯一的根节点,代表的区间是整个统计范围,如 [ 1 , N ] [1,N] [1,N]
 3.线段树的每个叶子节点都代表一个长度为 1 1 1的元区间 [ x , x ] [x,x] [x,x]
 4.对于每一个内部节点 [ l , r ] [l,r] [l,r],它的左子节点是 [ l , m i d ] [l,mid] [l,mid],右子节点是 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]。其中 m i d = ( l + r ) / 2 mid=(l+r)/2 mid=(l+r)/2
在这里插入图片描述
 上图就是一棵线段树,可以看出,线段树并不一定是一棵完全二叉树,但如果把树的最后一层去掉就变成了一棵完全二叉树。所以,我们可以通过一下方式定义线段树的节点编号:
 1.根节点的编号为 1 1 1
 2.标号为 x x x的节点的左儿子的编号为 x ∗ 2 x*2 x2,右儿子的编号为 x ∗ 2 + 1 x*2+1 x2+1

 这样,我们就可以定义一个结构体来保存线段树的相关信息。极端情况下,树的最大深度所处层只有一个叶子结点,其余的空余地方任然需要结构体空间。经计算,保存线段树的数组长度要不小于 4 ∗ N 4*N 4N才保证数组不会越界。

线段树的基本操作(以求区间最大值为例)

 线段树的基本用途是对序列进行维护,支持查询与修改指令。

建树(build)

 这个就轻轻松松了。直接从根节点开始,二分递归建树即可。注意在建树过程中定义节点相关信息,还要记得回溯上传有关信息。

struct node{
   
	int l,r,mx;
}t[MAXN*4];

void build(int p,int l,int r){
   
	t[p].l=l,t[p].r=r;
	if(l==r){
   t[p].mx=a[l];return;}
	int mid=(l+r)/2;
	build(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值