代码随想录Day 16| 513.找树左下角的值、112.路径之和、106.从中序与后序遍历序列构造二叉树、105从前序与中序遍历构造二叉树

提示:DDU,供自己复习使用。欢迎大家前来讨论~


二叉树 Part04

二叉树的高度和深度
二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。求深度一般用前序遍历。

二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。求高度用后序遍历。

为何选择后序遍历求二叉树高度?

在求解二叉树的高度时,通常采用后序遍历的方式,原因在于其能够确保在处理任何一个父节点之前,先完成对其左右子节点的处理。具体来说,后序遍历的顺序是“左子树 - 右子树 - 根节点”。这样,当我们到达一个节点时,我们已经知道了其左右子树的高度。因此,可以简单地通过比较左右子树的高度,并在其较大者的基础上加1,来确定当前节点的高度。这种方法可以逐层向上返回高度信息,直到达到树的根节点,从而获得整棵树的高度。

为何前序遍历适用于求树的深度?

求树的深度时,一般采用前序遍历,这是因为深度的计算起点是根节点。前序遍历的顺序是“根节点 - 左子树 - 右子树”,这种顺序与深度计算的逻辑相吻合。从根节点开始,前序遍历允许我们首先识别出当前的根节点,然后逐层向下遍历,直到达到树的叶子节点。在每次向下遍历的过程中,深度值随之增加。这样,我们可以在遍历结束时,得到从根节点到最深叶子节点的最长路径长度,即树的深度。前序遍历的这一特性使其成为计算树深度的自然选择。

二、题目

题目一:513. 找树左下角的值

leetcode题目链接

解题思路:

如何找最左边的叶子节点?

可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归法

递归三部曲:

  1. 确定递归函数的参数和返回值

    参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。还需要类里的两个全局变量,**maxLen**用来记录最大深度,**result**记录最大深度最左节点的数值。
    
    //代码
    int maxDepth = INT_MIN;   // 全局变量 记录最大深度
    int result;       // 全局变量 最大深度最左节点的数值
    void traversal(TreeNode* root, int depth)
    
  2. 确定终止条件

    当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

    //代码
    if (root->left == NULL && root->right == NULL) {
        if (depth > maxDepth) {
            maxDepth = depth;           // 更新最大深度
            result = root->val;   // 最大深度最左面的数值
        }
        return;
    }
    
  3. 确定单层递归的逻辑

    在找最大深度的时候,递归的过程中依然要使用回溯,代码:

                       // 中
    if (root->left) {   // 左
         depth++; // 深度加一
         traversal(root->left, depth);
         depth--; // 回溯,深度减一
    }
    if (root->right) { // 右
         depth++; // 深度加一
         traversal(root->right, depth);
         depth--; // 回溯,深度减一
    }
    return;
    

完整代码如下:

class Solution {
public:
   int maxDepth = INT_MIN;
   int result;
   void traversal(TreeNode* root, int depth) {
       if (root->left == NULL && root->right == NULL) {
           if (depth > maxDepth) {
               maxDepth = depth;
               result = root->val;
           }
           return;
       }
       if (root->left) {
           depth++;
           traversal(root->left, depth);
           depth--; // 回溯
       }
       if (root->right) {
           depth++;
           traversal(root->right, depth);
           depth--; // 回溯
       }
       return;
   }
   int findBottomLeftValue(TreeNode* root) {
       traversal(root, 0);
       return result;
   }
};

题目二: 112.路径总和

112. 路径总和

解题思路

  • 本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回.

递归方法:

  1. 确定递归函数的参数和返回类型

​ 参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

  1. 确定终止条件

​ 如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

​ 如果遍历到了叶子节点,count不为0,就是没找到。

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  1. 确定单层递归的逻辑

​ 因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

​ 递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

//体现回溯的逻辑
if (cur->left) { // 左
    count -= cur->left->val; // 递归,处理节点;
    if (traversal(cur->left, count)) return true;
    count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
    count -= cur->right->val;
    if (traversal(cur->right, count)) return true;
    count += cur->right->val;
}
return false;


//精简后的代码
if (cur->left) { // 左 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

整体的代码:

class Solution {
private:
  bool traversal(TreeNode* cur, int count) {
      if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
      if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回

      if (cur->left) { // 左
          count -= cur->left->val; // 递归,处理节点;
          if (traversal(cur->left, count)) return true;
          count += cur->left->val; // 回溯,撤销处理结果
      }
      if (cur->right) { // 右
          count -= cur->right->val; // 递归,处理节点;
          if (traversal(cur->right, count)) return true;
          count += cur->right->val; // 回溯,撤销处理结果
      }
      return false;
  }

public:
  bool hasPathSum(TreeNode* root, int sum) {
      if (root == NULL) return false;
      return traversal(root, sum - root->val);
  }
};

题目三:113.路径总和ii

113. 路径总和 II

解题思路:

  • 113.路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!

    class solution {
    private:
      vector<vector<int>> result;
      vector<int> path;
      // 递归函数不需要返回值,因为我们要遍历整个树
      void traversal(TreeNode* cur, int count) {
          if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
              result.push_back(path);
              return;
          }
    
          if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回
    
          if (cur->left) { // 左 (空节点不遍历)
              path.push_back(cur->left->val);
              count -= cur->left->val;
              traversal(cur->left, count);    // 递归
              count += cur->left->val;        // 回溯
              path.pop_back();                // 回溯
          }
          if (cur->right) { // 右 (空节点不遍历)
              path.push_back(cur->right->val);
              count -= cur->right->val;
              traversal(cur->right, count);   // 递归
              count += cur->right->val;       // 回溯
              path.pop_back();                // 回溯
          }
          return ;
      }
    public:
        vector<vector<int>> pathSum(TreeNode* root, int sum) {
            result.clear();
            path.clear();
            if (root == NULL) return result;
            path.push_back(root->val); // 把根节点放进路径
            traversal(root, sum - root->val);
            return result;
        }
    };    
        
    

回溯总结:

在递归中,如果你想要保留每次递归调用的临时状态以供以后使用,就需要回溯;如果你只是想要递归调用的结果,那么就通过函数的返回值来得到这个结果,不需要回溯。

题目四:106.从中序与后序遍历序列构造二叉树

106. 从中序与后序遍历序列构造二叉树

解题思路:

根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

流程如图:

106.从中序与后序遍历序列构造二叉树

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组,只有这个可以分开左右两个区间)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

    框架代码:


```cpp
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {

    // 第一步
    if (postorder.size() == 0) return NULL;

    // 第二步:后序遍历数组最后一个元素,就是当前的中间节点
    int rootValue = postorder[postorder.size() - 1];
    TreeNode* root = new TreeNode(rootValue);

    // 叶子节点
    if (postorder.size() == 1) return root;

    // 第三步:找切割点
    int delimiterIndex;
    for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
        if (inorder[delimiterIndex] == rootValue) break;
    }

    // 第四步:切割中序数组,得到 中序左数组和中序右数组
    // 第五步:切割后序数组,得到 后序左数组和后序右数组

    // 第六步
    root->left = traversal(中序左数组, 后序左数组);
    root->right = traversal(中序右数组, 后序右数组);

    return root;
}

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
    if (inorder[delimiterIndex] == rootValue) break;
}

// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

后序数组的切割:中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);

// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:
  TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
      if (postorder.size() == 0) return NULL;

      // 后序遍历数组最后一个元素,就是当前的中间节点
      int rootValue = postorder[postorder.size() - 1];
      TreeNode* root = new TreeNode(rootValue);

      // 叶子节点
      if (postorder.size() == 1) return root;

      // 找到中序遍历的切割点
      int delimiterIndex;
      for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
          if (inorder[delimiterIndex] == rootValue) break;
      }

      // 切割中序数组
      // 左闭右开区间:[0, delimiterIndex)
      vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
      // [delimiterIndex + 1, end)
      vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

      // postorder 舍弃末尾元素
      postorder.resize(postorder.size() - 1);

      // 切割后序数组
      // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
      // [0, leftInorder.size)
      vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
      // [leftInorder.size(), end)
      vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

      root->left = traversal(leftInorder, leftPostorder);
      root->right = traversal(rightInorder, rightPostorder);

      return root;
  }
public:
  TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
      if (inorder.size() == 0 || postorder.size() == 0) return NULL;
      return traversal(inorder, postorder);
  }
};

加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorder.size() == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        postorder.resize(postorder.size() - 1);

        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        // 以下为日志
        cout << "----------" << endl;

        cout << "leftInorder :";
        for (int i : leftInorder) {
            cout << i << " ";
        }
        cout << endl;

        cout << "rightInorder :";
        for (int i : rightInorder) {
            cout << i << " ";
        }
        cout << endl;

        cout << "leftPostorder :";
        for (int i : leftPostorder) {
            cout << i << " ";
        }
        cout << endl;
         cout << "rightPostorder :";
        for (int i : rightPostorder) {
            cout << i << " ";
        }
        cout << endl;

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

题目五:105.从前序与中序遍历序列构造二叉树

105. 从前序与中序遍历序列构造二叉树

解题思路:

本题和106是一样的道理。

带日志的版本C++代码如下: (带日志的版本仅用于调试,不要在leetcode上提交,会超时

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        cout << "----------" << endl;
        cout << "leftInorder :";
        for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "rightInorder :";
        for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "leftPreorder :";
        for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {
            cout << preorder[i] << " ";
        }
        cout << endl;

        cout << "rightPreorder :";
        for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {
            cout << preorder[i] << " ";
        }
        cout << endl;


        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());

    }
};

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;

        // 参数坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
    }
};

小结:

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

但前序和后序并不能确定一个二叉树,因为没有中序遍历无法确定左右部分,也就是无法分割。


总结

  • 二叉树的构造,(前序+中序或者后序+中序)
  • 递归函数什么时候需要返回值

坚持坚持,看一遍也是好的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值