AVL树

概念

为了防止二叉搜索树退化成单支树的例子,所以为二叉搜索树加入了限制条件,平衡因子,平衡因子是用父节点的右子树高度减去左子树高度,AVL树规定每个节点的平衡因子不能大于1也不能小于-1,所以每次进行插入操作时,都需要保证每个节点的左右子树高度之差不超过1,从而可以降低树的高度,从而减少平均搜索长度

AVL树节点的定义

template<class T>
struct AVLTreeNode
 {
    AVLTreeNode(const T& data)
     : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
     , _data(data), _bf(0)
     {}
    AVLTreeNode<T>* _pLeft; // 该节点的左孩子
    AVLTreeNode<T>* _pRight; // 该节点的右孩子
    AVLTreeNode<T>* _pParent; // 该节点的双亲
    T _data;
    int _bf; // 该节点的平衡因子
 };

AVL树的插入

AVL的插入就是在平衡二叉树插入的基础上引入了平衡因子,所以AVL的插入可以用二叉搜索树的插入方法插入,然后再调整平衡因子

bool Insert(const T& data) {
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...
	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树
	// 的平衡性
	/*
	pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
	1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
	比特科技
	2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
	此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
	1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满
	足
	AVL树的性质,插入成功
	2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1, 此
	时以pParent为根的树的高度增加,需要继续向上更新
	3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
	*/
	while (pParent)
	{
		// 更新双亲的平衡因子
		if (pCur == pParent->_pLeft)
			pParent->_bf--;
		else
			pParent->_bf++;
		// 更新后检测双亲的平衡因子
		if (0 == pParent->_bf)
			break;
		else if (1 == pParent->_bf || -1 == pParent->_bf)
		{
			// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
				// 的高度增加了一层,因此需要继续向上调整
				pCur = pParent;
			pParent = pCur->_pParent;
		}
		else
		{
			// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
			// 为根的树进行旋转处理
			if (2 == pParent->_bf)
			{
				// ...
			}
			else
			{
				// ...
			}
		}
	}
	return true;
}

因为插入涉及旋转,所以我在这里用图示的方法说一下旋转

整个旋转分为四种情况

1.元素插入较高左子树的左侧,只需要进行右单旋

例如这个图,将4向上拉,6的左指向4的右,4的右指向6

/*
上图在插入前,AVL树是平衡的,新节点插入到4的左子树(注意:此处不是左孩子)中,4左子树增加
了一层,导致以6为根的二叉树不平衡,要让6平衡,只能将6左子树的高度减少一层,右子树增加一
层,
即将左子树往上提,这样6转下来,因为6比4大,只能将其放在4的右子树,而如果4有右子树,右
子树根的值一定大于4,小于6,只能将其放在6的左子树,旋转完成后,更新节点的平衡因子即可。在旋
转过程中,有以下几种情况需要考虑:
1. 4节点的右孩子可能存在,也可能不存在
2. 6可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/
void _RotateR(PNode pParent) {
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子,注意:该
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	// 旋转完成之后,4的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;
	// 6 作为 3的右孩子
	pSubL->_pRight = pParent;
	// 因为6可能是棵子树,因此在更新其双亲前必须先保存6的双亲
	PNode pPParent = pParent->_pParent;
	// 更新6的双亲
	pParent->_pParent = pSubL;
	// 更新4的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
			pSubL->_pParent = NULL;
	}
	else
	{
		// 如果6是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}

2.元素插入较高右子树的右侧,也就是右右:左单旋

它的操作和右单旋操作差不多

3.元素插入较高左子树的右侧,也就是左右:先左单旋再右单旋

// 旋转之前,6的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent) {
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因
	子
		int bf = pSubLR->_bf;
	// 先对3进行左单旋
	_RotateL(pParent->_pLeft);
	// 再对6进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}

3.元素插入较高右子树的左侧,也就是右左:先右单旋再左单旋

总结 

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

1.pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

当pSubR的平衡因子为1时,执行左单选

当pSubR的平衡因子为-1时,执行左右双旋

2.pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

当pSubL的平衡因子为-1时,执行右单旋

当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新

AVL树的验证

AVL树是在平衡二叉树的基础上加入了平衡因子,所以要验证其为AVL树,则要根据其中序遍历看是否是有序的判断其是否为平衡二叉树,然后根据每一个节点的平衡因子是否符合AVL树的要求则可证明

int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot) {
	// 空树也是AVL树
	if (nullptr == pRoot) return true;
	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(pRoot->_pLeft);
	int rightHeight = _Height(pRoot->_pRight);
	int diff = rightHeight - leftHeight;
	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))
		return false;
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
}

AVL树的性能

因为AVL树是绝对平衡的二叉搜索树,所以其平均查找效率为log2N,但是如果经常对AVL树进行一些修改如插入和删除,则需要不断对树进行调整,甚至有可能调整到根的位置,因此如果需要一种查询高效且有序的数据结构,而且数据的个数为静态,可以考虑使用AVL树,否则则不适合

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值