python-leetcode-703. 数据流中的第 K 大元素

703. 数据流中的第 K 大元素 - 力扣(LeetCode)

你可以使用最小堆(小顶堆)来高效地维护数据流中的第 k 大元素。Python 的 heapq 模块非常适合这个任务。下面是 KthLargest 类的实现:

import heapq

class KthLargest:
    def __init__(self, k: int, nums: list[int]):
        self.k = k
        self.min_heap = []
        for num in nums:
            self.add(num)  # 初始化时调用 add 方法,保持堆的大小为 k

    def add(self, val: int) -> int:
        if len(self.min_heap) < self.k:
            heapq.heappush(self.min_heap, val)
        elif val > self.min_heap[0]:
            heapq.heappushpop(self.min_heap, val)
        return self.min_heap[0]  # 堆顶元素即为第 k 大元素

解释:

  1. 初始化

    • heapq 维护一个小顶堆 self.min_heap

    • 逐个插入 nums 中的元素,确保堆的大小最多为 k

  2. add 方法

    • 若堆的大小小于 k,直接插入 val

    • val 大于堆顶元素(即当前第 k 大的元素),替换堆顶,保持堆的大小为 k

    • 返回堆顶元素,即当前第 k 大的元素。

这种方法的 add 操作的时间复杂度为 O(log k),适用于处理动态数据流的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值