从数字数组中构造三位偶数的不同解法
题目描述
问题背景:
给定一个数字数组 digits
,从中选择三个数字组成一个三位偶数。要求:
- 每个数字在三位偶数中只能使用一次。
- 不能有前导零。
- 生成的数字必须是偶数,即个位必须是偶数。
我们的任务是计算能够构成的不同三位偶数的数量。
输入
- 一个整数数组
digits
,数组元素可能包含重复数字,且数字范围为 0 至 9。
输出
- 返回能够构成的不同三位偶数的数量。
解题分析
三位偶数的构成条件
在构造三位偶数时,我们需要遵循以下规则:
- 百位数字:百位不能是零。因此,百位必须是
digits
中的一个非零数字。 - 十位数字:十位可以是任何数字,但不能和百位相同。也就是说,百位和十位不能重复。
- 个位数字:个位必须是偶数(0, 2, 4, 6, 8),并且可以与百位或十位相同。
关键点:
- 无前导零:百位不能是零,所以零只能作为十位或个位。
- 偶数的选择:三位数的个位必须是偶数,且可能与其他位重复。
- 数字的使用限制:同一个数字只能使用一次。数组中可能有重复数字,我们需要考虑每个数字的出现次数。
解题思路
方法一:暴力枚举法
暴力枚举法是一种直观的解决方案,它通过三重循环来遍历所有可能的数字组合,并检查每个组合是否符合题目要求。具体步骤如下:
- 提取有效的偶数:个位必须是偶数,所以首先我们提取出所有偶数数字。
- 百位不能为零:百位必须是非零的数字。
- 十位不能和百位相同:十位必须与百位不同。