2022鹏城杯CTF---Crypto

easy_rsa

加密脚本:

import gmpy2
from Crypto.Util.number import *
import random
from secret import flag

m1 = flag[0:12]
m2 = flag[12:24]
m3 = flag[24:]

def encrypt1(m):
    while 1:
        e = random.randint(100, 1000)
        p = getPrime(1024)
        q = getPrime(1024)
        phi_n = (p - 1) * (q - 1)
        t = gmpy2.gcd(e, phi_n)
        if gmpy2.invert(e // t, phi_n) and t != 1:
            break
    n = p * q
    c = pow(m, e, n)
    print({'c': format(c, 'x'), 'p': format(p, 'x'), 'q': format(q, 'x'), 'e': format(e, 'x')})


def encrypt2(m):
    p = getPrime(1024)
    q = getPrime(1024)
    n = p * q
    e = 65537
    c = gmpy2.powmod(m, e, n)
    print({'c': format(c, 'x'), 'p': format((p >> 60) << 60, 'x'), 'e': format(e, 'x'), 'n': format(n, 'x')})


def encrypt3(m):
    p = getPrime(1024)
    q = getPrime(1024)
    n = p * q
    e = 65537
    M = 2022 * m * 1011 * p
    c = pow(M, e, n)
    print({'c': format(c, 'x'), 'n': format(n, 'x'),'e':format(e, 'x')})


if __name__ == '__main__':
    encrypt1(bytes_to_long(m1))
    encrypt2(bytes_to_long(m2))
    encrypt3(bytes_to_long(m3))

# {'c': '27455f081e4858790c6503580dad3302ae359c9fb46dc601eee98f05142128404e95377324720adbbdebf428549008bcd1b670f6749592a171b30316ab707004b9999f3b80de32843afdfd30505b1f4166a03cee9fc48902b74b6e850cfd268e6917c5d84e64f7e7cd0e4a30bfe5903fb5d821d27fdc817d9c4536a8e7aea55af266abcae857a8ffff2f741901baba1b44091a137c69c471c123ab0b80e250e055959c468e6e37c005105ecd7c8b48c659024e5e251df3eeff5da7b3d561cd98150da3575a16bee5f2524d2795fd4879487018345c1e96efc085ed45fb5f02c027aee5bca3aad0eb3e23376c0cd18b02fb05a1ff8fb1af0a3ce4bb671599894e', 'p': 'bb602e402b68a5cfcc5cfcc63cc82e362e98cb7043817e3421599a4bb8755777c362813742852dad4fec7ec33f1faec04926f0c253f56ab4c4dde6d71627fbc9ef42425b70e5ecd55314e744aa66653103b7d1ba86d1e0e21920a0bfe7d598bd09c3c377a3268928b953005450857c6cfea5bfdd7c16305baed0f0a31ad688bd', 'q': 'bb8d1ea24a3462ae6ec28e79f96a95770d726144afc95ffffa19c7c3a3786a6acc3309820ba7b1a28a4f111082e69e558b27405613e115139b38e799c723ab7fdd7be14b330b118ae60e3b44483a4c94a556e810ab94bbb102286d0100d7c20e7494e20e0c1030e016603bd2a06c1f6e92998ab68e2d420faf47f3ee687fb6d1', 'e': '292'}
# {'c': '3a80caebcee814e74a9d3d81b08b1130bed6edde2c0161799e1116ab837424fbc1a234b9765edfc47a9d634e1868105d4458c9b9a0d399b870adbaa2337ac62940ade08daa8a7492cdedf854d4d3a05705db3651211a1ec623a10bd60596e891ccc7b9364fbf2e306404aa2392f5598694dec0b8f7efc66e94e3f8a6f372d833941a2235ebf2fc77c163abcac274836380045b63cc9904d9b13c0935040eda6462b99dd01e8230fdfe2871124306e7bca5b356d16796351db37ec4e574137c926a4e07a2bfe76b9cbbfa4b5b010d678804df3e2f23b4ec42b8c8433fa4811bf1dc231855bea4225683529fad54a9b539fe824931b4fdafab67034e57338217f', 'p': 'a9cb9e2eb43f17ad6734356db18ad744600d0c19449fc62b25db7291f24c480217d60a7f87252d890b97a38cc6943740ac344233446eea4084c1ba7ea5b7cf2399d42650b2a3f0302bab81295abfd7cacf248de62d3c63482c5ea8ab6b25cdbebc83eae855c1d07a8cf0408c2b721e43c4ac53262bf9aaf7a000000000000000', 'e': '10001', 'n': '841a5a012c104e600eca17b451d5fd37c063ad347707a2e88f36a07e9ad4687302790466e99f35b11580cbe8b0a212e6709686c464a6393c5895b1f97885f23ea12d2069eb6dc3cb4199fb8c6e80a4a94561c6c3499c3c02d9dc9cf216c0f44dc91701a6d9ec89981f261a139500420a51014492f1da588a26e761439dd5739b32540ca6dc1ec3b035043bc535304a06ccb489f72fcd1aa856e1cffe195039176937f9a16bd19030d1e00095f1fd977cf4f23e47b55650ca4712d1eb089d92df032e5180d05311c938a44decc6070cd01af4c6144cdab2526e5cb919a1828bec6a4f3332bf1fa4f1c9d3516fbb158fd4fbcf8b0e67eff944efa97f5b24f9aa65'}
# {'c': '1bd2a47a5d275ba6356e1e2bd10d6c870693be540e9318c746e807a7672f3a75cc63841170126d7dba52d7f6f9cf0f8dce9705fc1785cc670b2658b05d4b24d8918f95594844bfa920c8ffe73160c2c313b3fdbc4541ec19828165e34afa7d05271cc6fd59d08138b88c11677e6ac3b39cff525dcb19694b0388d895f53805a5e5bd8cfb947080e4855aaf83ebd85a397526f7d76d26031386900cb44a2e4bd121412bcee7a6c1e9af411e234f130e68a428596265d3ec647e50f65cb81393f4bd38389a2b9010fd715582506b9054dc235aced50757462b77a5606f116853af0c1ea3c7cf0d304f885d86081f8bac8b67b0625122f75448c5b6eb8f1cc8a0df', 'n': 'c2b17c86a8950f6dafe0a633890e4271cfb20c5ffda2d6b3d035afa655ed05ec16c67b18832ed887f2cea83056af079cc75c2ce43c90cce3ed02c2e07d256f240344f1734adeee6dc2b3b4bbf6dcfc68518d0a74e3e66f1865db95ef4204457e6471903c2321ac97f3b8e3d8d935896e9fc9145a30a3e24e7c320490a9944c1e94d301c8388445532699e6189f4aa6a86f67f1d9b8fb0de4225e005bd27594cd33e36622b2cd8eb2781f0c24d33267d9f29309158942b681aab81f39d1b4a73bd17431b46a89a0e4c2c58b1e24e850355c63b72392600d3fff7a16f6ef80ea515709da3ef1d28782882b0dd2f76bf609590db31979c5d1fd03f75d9d8f1c5069', 'e': '10001'}

flag被分成了三部分

第一部分,e与phi_n不互素,gcd(e,phi_n) == 4,此时e对phi_n没有逆元,但gcd(e//t,phi_n) == 1

故e//t对phi_n有逆元,即m = c ^{t*e/t} mod n,先把c^{t}当整体,再作开方处理得到m。

e1 = 292
p1 = int('bb602e402b68a5cfcc5cfcc63cc82e362e98cb7043817e3421599a4bb8755777c362813742852dad4fec7ec33f1faec04926f0c253f56ab4c4dde6d71627fbc9ef42425b70e5ecd55314e744aa66653103b7d1ba86d1e0e21920a0bfe7d598bd09c3c377a3268928b953005450857c6cfea5bfdd7c16305baed0f0a31ad688bd',16)
q1 = int('bb8d1ea24a3462ae6ec28e79f96a95770d726144afc95ffffa19c7c3a3786a6acc3309820ba7b1a28a4f111082e69e558b27405613e115139b38e799c723ab7fdd7be14b330b118ae60e3b44483a4c94a556e810ab94bbb102286d0100d7c20e7494e20e0c1030e016603bd2a06c1f6e92998ab68e2d420faf47f3ee687fb6d1',16)
c1 = int('27455f081e4858790c6503580dad3302ae359c9fb46dc601eee98f05142128404e95377324720adbbdebf428549008bcd1b670f6749592a171b30316ab707004b9999f3b80de32843afdfd30505b1f4166a03cee9fc48902b74b6e850cfd268e6917c5d84e64f7e7cd0e4a30bfe5903fb5d821d27fdc817d9c4536a8e7aea55af266abcae857a8ffff2f741901baba1b44091a137c69c471c123ab0b80e250e055959c468e6e37c005105ecd7c8b48c659024e5e251df3eeff5da7b3d561cd98150da3575a16bee5f2524d2795fd4879487018345c1e96efc085ed45fb5f02c027aee5bca3aad0eb3e23376c0cd18b02fb05a1ff8fb1af0a3ce4bb671599894e',16)

n1 = p1*q1
phi_n = (p1-1)*(q1-1)
t = gcd(e1,phi_n)
d1 = invert(e1//t,phi_n)
m1 = pow(c1,d1,n1)
msg1 = iroot(m1,t)[0]

第二部分,p高位攻击,利用sage解出p、q来:

我这里用的在线网站,得到p、q后就能解出m了:

e2 = 10001
n2 = int('841a5a012c104e600eca17b451d5fd37c063ad347707a2e88f36a07e9ad4687302790466e99f35b11580cbe8b0a212e6709686c464a6393c5895b1f97885f23ea12d2069eb6dc3cb4199fb8c6e80a4a94561c6c3499c3c02d9dc9cf216c0f44dc91701a6d9ec89981f261a139500420a51014492f1da588a26e761439dd5739b32540ca6dc1ec3b035043bc535304a06ccb489f72fcd1aa856e1cffe195039176937f9a16bd19030d1e00095f1fd977cf4f23e47b55650ca4712d1eb089d92df032e5180d05311c938a44decc6070cd01af4c6144cdab2526e5cb919a1828bec6a4f3332bf1fa4f1c9d3516fbb158fd4fbcf8b0e67eff944efa97f5b24f9aa65',16)
p2 = 119234372387564173916926418564504307771905987823894721284221707768770334474240277144999791051191061404002537779694672314673997030282474914206610847346023297970473719280866108677835517943804329212840618914863288766846702119011361533150365876285203805100986025166317939702179911918098037294325448226481818486521
q2 = 139862779248852876780236838155351435339041528333485708458669785004897778564234874018135441729896017420539905517964705602836874055417791439544162777504181482765029478481701166935117795286988835104239238153206137155845327225155932803904032184502243017645538314995056944419185855910939481260886933456330514972109
c2 = int('3a80caebcee814e74a9d3d81b08b1130bed6edde2c0161799e1116ab837424fbc1a234b9765edfc47a9d634e1868105d4458c9b9a0d399b870adbaa2337ac62940ade08daa8a7492cdedf854d4d3a05705db3651211a1ec623a10bd60596e891ccc7b9364fbf2e306404aa2392f5598694dec0b8f7efc66e94e3f8a6f372d833941a2235ebf2fc77c163abcac274836380045b63cc9904d9b13c0935040eda6462b99dd01e8230fdfe2871124306e7bca5b356d16796351db37ec4e574137c926a4e07a2bfe76b9cbbfa4b5b010d678804df3e2f23b4ec42b8c8433fa4811bf1dc231855bea4225683529fad54a9b539fe824931b4fdafab67034e57338217f',16)

phi_n2 = (p2-1)*(q2-1)
d2 = invert(e2,phi_n2)
m2 = pow(c2,d2,n2)

第三部分, 看到M = 2022 * m * 1011 * p,又n = p*q,且c = M^{e} mod n,故求n和c的公因数可以得到p,p出来就好解了:

e3 = 0x10001
n3 = int('c2b17c86a8950f6dafe0a633890e4271cfb20c5ffda2d6b3d035afa655ed05ec16c67b18832ed887f2cea83056af079cc75c2ce43c90cce3ed02c2e07d256f240344f1734adeee6dc2b3b4bbf6dcfc68518d0a74e3e66f1865db95ef4204457e6471903c2321ac97f3b8e3d8d935896e9fc9145a30a3e24e7c320490a9944c1e94d301c8388445532699e6189f4aa6a86f67f1d9b8fb0de4225e005bd27594cd33e36622b2cd8eb2781f0c24d33267d9f29309158942b681aab81f39d1b4a73bd17431b46a89a0e4c2c58b1e24e850355c63b72392600d3fff7a16f6ef80ea515709da3ef1d28782882b0dd2f76bf609590db31979c5d1fd03f75d9d8f1c5069',16)
c3 = int('1bd2a47a5d275ba6356e1e2bd10d6c870693be540e9318c746e807a7672f3a75cc63841170126d7dba52d7f6f9cf0f8dce9705fc1785cc670b2658b05d4b24d8918f95594844bfa920c8ffe73160c2c313b3fdbc4541ec19828165e34afa7d05271cc6fd59d08138b88c11677e6ac3b39cff525dcb19694b0388d895f53805a5e5bd8cfb947080e4855aaf83ebd85a397526f7d76d26031386900cb44a2e4bd121412bcee7a6c1e9af411e234f130e68a428596265d3ec647e50f65cb81393f4bd38389a2b9010fd715582506b9054dc235aced50757462b77a5606f116853af0c1ea3c7cf0d304f885d86081f8bac8b67b0625122f75448c5b6eb8f1cc8a0df',16)

p3 = gcd(n3,c3)
q3 = n3 // p3
phi_n3 = (p3-1)*(q3-1)

d3 = invert(e3,phi_n3)
M = pow(c3,d3,n3)
m3 = M // (2022 * 1011 * p3)

注意给的所有数都是16进制的,整体代码如下:

from gmpy2 import *
from Crypto.Util.number import *

#part1
e1 = 0x292
p1 = int('bb602e402b68a5cfcc5cfcc63cc82e362e98cb7043817e3421599a4bb8755777c362813742852dad4fec7ec33f1faec04926f0c253f56ab4c4dde6d71627fbc9ef42425b70e5ecd55314e744aa66653103b7d1ba86d1e0e21920a0bfe7d598bd09c3c377a3268928b953005450857c6cfea5bfdd7c16305baed0f0a31ad688bd',16)
q1 = int('bb8d1ea24a3462ae6ec28e79f96a95770d726144afc95ffffa19c7c3a3786a6acc3309820ba7b1a28a4f111082e69e558b27405613e115139b38e799c723ab7fdd7be14b330b118ae60e3b44483a4c94a556e810ab94bbb102286d0100d7c20e7494e20e0c1030e016603bd2a06c1f6e92998ab68e2d420faf47f3ee687fb6d1',16)
c1 = int('27455f081e4858790c6503580dad3302ae359c9fb46dc601eee98f05142128404e95377324720adbbdebf428549008bcd1b670f6749592a171b30316ab707004b9999f3b80de32843afdfd30505b1f4166a03cee9fc48902b74b6e850cfd268e6917c5d84e64f7e7cd0e4a30bfe5903fb5d821d27fdc817d9c4536a8e7aea55af266abcae857a8ffff2f741901baba1b44091a137c69c471c123ab0b80e250e055959c468e6e37c005105ecd7c8b48c659024e5e251df3eeff5da7b3d561cd98150da3575a16bee5f2524d2795fd4879487018345c1e96efc085ed45fb5f02c027aee5bca3aad0eb3e23376c0cd18b02fb05a1ff8fb1af0a3ce4bb671599894e',16)

n1 = p1*q1
phi_n = (p1-1)*(q1-1)
t = gcd(e1,phi_n)
d1 = invert(e1//t,phi_n)
m1 = pow(c1,d1,n1)
msg1 = iroot(m1,t)[0]

#part2
e2 = 0x10001
n2 = int('841a5a012c104e600eca17b451d5fd37c063ad347707a2e88f36a07e9ad4687302790466e99f35b11580cbe8b0a212e6709686c464a6393c5895b1f97885f23ea12d2069eb6dc3cb4199fb8c6e80a4a94561c6c3499c3c02d9dc9cf216c0f44dc91701a6d9ec89981f261a139500420a51014492f1da588a26e761439dd5739b32540ca6dc1ec3b035043bc535304a06ccb489f72fcd1aa856e1cffe195039176937f9a16bd19030d1e00095f1fd977cf4f23e47b55650ca4712d1eb089d92df032e5180d05311c938a44decc6070cd01af4c6144cdab2526e5cb919a1828bec6a4f3332bf1fa4f1c9d3516fbb158fd4fbcf8b0e67eff944efa97f5b24f9aa65',16)
p2 = 119234372387564173916926418564504307771905987823894721284221707768770334474240277144999791051191061404002537779694672314673997030282474914206610847346023297970473719280866108677835517943804329212840618914863288766846702119011361533150365876285203805100986025166317939702179911918098037294325448226481818486521
q2 = 139862779248852876780236838155351435339041528333485708458669785004897778564234874018135441729896017420539905517964705602836874055417791439544162777504181482765029478481701166935117795286988835104239238153206137155845327225155932803904032184502243017645538314995056944419185855910939481260886933456330514972109
c2 = int('3a80caebcee814e74a9d3d81b08b1130bed6edde2c0161799e1116ab837424fbc1a234b9765edfc47a9d634e1868105d4458c9b9a0d399b870adbaa2337ac62940ade08daa8a7492cdedf854d4d3a05705db3651211a1ec623a10bd60596e891ccc7b9364fbf2e306404aa2392f5598694dec0b8f7efc66e94e3f8a6f372d833941a2235ebf2fc77c163abcac274836380045b63cc9904d9b13c0935040eda6462b99dd01e8230fdfe2871124306e7bca5b356d16796351db37ec4e574137c926a4e07a2bfe76b9cbbfa4b5b010d678804df3e2f23b4ec42b8c8433fa4811bf1dc231855bea4225683529fad54a9b539fe824931b4fdafab67034e57338217f',16)

phi_n2 = (p2-1)*(q2-1)
d2 = invert(e2,phi_n2)
m2 = pow(c2,d2,n2)

#part3
e3 = 0x10001
n3 = int('c2b17c86a8950f6dafe0a633890e4271cfb20c5ffda2d6b3d035afa655ed05ec16c67b18832ed887f2cea83056af079cc75c2ce43c90cce3ed02c2e07d256f240344f1734adeee6dc2b3b4bbf6dcfc68518d0a74e3e66f1865db95ef4204457e6471903c2321ac97f3b8e3d8d935896e9fc9145a30a3e24e7c320490a9944c1e94d301c8388445532699e6189f4aa6a86f67f1d9b8fb0de4225e005bd27594cd33e36622b2cd8eb2781f0c24d33267d9f29309158942b681aab81f39d1b4a73bd17431b46a89a0e4c2c58b1e24e850355c63b72392600d3fff7a16f6ef80ea515709da3ef1d28782882b0dd2f76bf609590db31979c5d1fd03f75d9d8f1c5069',16)
c3 = int('1bd2a47a5d275ba6356e1e2bd10d6c870693be540e9318c746e807a7672f3a75cc63841170126d7dba52d7f6f9cf0f8dce9705fc1785cc670b2658b05d4b24d8918f95594844bfa920c8ffe73160c2c313b3fdbc4541ec19828165e34afa7d05271cc6fd59d08138b88c11677e6ac3b39cff525dcb19694b0388d895f53805a5e5bd8cfb947080e4855aaf83ebd85a397526f7d76d26031386900cb44a2e4bd121412bcee7a6c1e9af411e234f130e68a428596265d3ec647e50f65cb81393f4bd38389a2b9010fd715582506b9054dc235aced50757462b77a5606f116853af0c1ea3c7cf0d304f885d86081f8bac8b67b0625122f75448c5b6eb8f1cc8a0df',16)

p3 = gcd(n3,c3)
q3 = n3 // p3
phi_n3 = (p3-1)*(q3-1)

d3 = invert(e3,phi_n3)
M = pow(c3,d3,n3)
m3 = M // (2022 * 1011 * p3)

flag = long_to_bytes(msg1) + long_to_bytes(m2) + long_to_bytes(m3)
print(flag)
#b'PCL{16745c3b0c134c83b74f977260aae9b5}'

babyrsa

加密脚本:

from Crypto.Util.number import *
from libnum import s2n
from secret import flag
p = getPrime(1024)
q = getPrime(16)
n = p*q
m = s2n(flag)
for i in range(1,p-q):
    m = m*i%n
e = 1049
print(pow(2,e,n))
print(pow(m,e,n))
#4513855932190587780512692251070948513905472536079140708186519998265613363916408288602023081671609336332823271976169443708346965729874135535872958782973382975364993581165018591335971709648749814573285241290480406050308656233944927823668976933579733318618949138978777831374262042028072274386196484449175052332019377
#3303523331971096467930886326777599963627226774247658707743111351666869650815726173155008595010291772118253071226982001526457616278548388482820628617705073304972902604395335278436888382882457685710065067829657299760804647364231959804889954665450340608878490911738748836150745677968305248021749608323124958372559270

记两输出结果分别为c1、c2,由print(pow(2,e,n))可以得到:c1 = 2^{e} mod n,进一步得到:

kn = 2^{e} - c1,n是小于1040位的数,通过计算2^{e}和c1的位数,知道2^{e}是1050位,c1是1039位,

故可以确定k是小于11位的,这里可以爆破出k来:

k_n = 2**e - c1
for k in range(1,2**11):
    if k_n % k == 0 and (k_n//k).bit_length() <= 1040:#找到位数小于1040的n
        print(k)
        n = k_n // k
        print(n)

对n进行分解,得到p、q,小的是q。记print(pow(m,e,n))里的m为M,故有c2 = M^{e} mod n,由上面的for循环可以知道M与初始m的关系:M = m * (p-q-1)! mod n,这里需要用威尔逊定理。

p = 170229264879724117919007372149468684565431232721075153274808454126426741324966131188484635914814926870341378228417496808202497615585946352638507704855332363766887139815236730403246238633855524068161116748612090155595549964229654262432946553891601975628848891407847198187453488358420350203927771308228162321231
q =  34211
n = p*q
phi_n = (p-1)*(q-1)
d = invert(e,phi_n)
M = pow(c2,d,n)
for i in range(p-q, p):
    M = M*i%n
m=(-M)%p
print(long_to_bytes(m))

整体代码如下:

from gmpy2 import *
from Crypto.Util.number import *

e = 1049
c1 = 4513855932190587780512692251070948513905472536079140708186519998265613363916408288602023081671609336332823271976169443708346965729874135535872958782973382975364993581165018591335971709648749814573285241290480406050308656233944927823668976933579733318618949138978777831374262042028072274386196484449175052332019377
c2 = 3303523331971096467930886326777599963627226774247658707743111351666869650815726173155008595010291772118253071226982001526457616278548388482820628617705073304972902604395335278436888382882457685710065067829657299760804647364231959804889954665450340608878490911738748836150745677968305248021749608323124958372559270
#print(2**e)
res = 6032057205060440848842124543157735677050252251748505781796615064961622344493727293370973578138265743708225425014400837164813540499979063179105919597766951022193355091707896034850684039059079180396788349106095584290087446076413771468940477241550670753145517602931224392424029547429993824129889235158145614364972941312
#print(res.bit_length())
#print(c1.bit_length())
k_n = 2**e - c1
for k in range(1,2**11):
    if k_n % k == 0 and (k_n//k).bit_length() <= 1040:#找到位数小于1040的n
        print(k)
        n = k_n // k
        print(n)

p = 170229264879724117919007372149468684565431232721075153274808454126426741324966131188484635914814926870341378228417496808202497615585946352638507704855332363766887139815236730403246238633855524068161116748612090155595549964229654262432946553891601975628848891407847198187453488358420350203927771308228162321231
q =  34211
n = p*q
phi_n = (p-1)*(q-1)
d = invert(e,phi_n)
M = pow(c2,d,n)
for i in range(p-q, p):
    M = M*i%n
m=(-M)%p
print(long_to_bytes(m))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值