【Zookeeper】Zookeeper学习笔记(Dubbo、Eureka)

Java后端 专栏收录该内容
5 篇文章 0 订阅

最近实习等遇到的项目中都会或多或少的涉及到Zookeeper的使用。但之前对Zookeeper、Eureka、Dubbo等概念以及他们之间的区别还是有些模糊,所以我打算好好看看、整理整理这一方面的知识点,并且总结在此。

一、前置:微服务架构

在这里插入图片描述

架构说明:

​ 将系统服务层完全独立出来,抽取为一个一个的微服务。

​ 采用轻量级框架协议传输。

架构优点:

​ 服务拆分粒度更细,有利于提高开发效率。

​ 可以针对不同服务制定对应的优化方案。

​ 适用于互联网时代,产品迭代周期更短。

架构缺点:

​ 粒度太细导致服务太多,维护成本高。

​ 分布式系统开发的技术成本高,对团队的挑战大。

1. 服务调用方式

1.1 RPC和HTTP

微服务框架目前主流的有Dubbo和Spring Cloud。微服务面临着服务间的远程调用。常见的服务间的远程调用方式有以下2种:

  • RPC:Remote Produce Call远程过程调用,RPC基于Socket,工作在会话层。自定义数据格式,速度快,效率高。早期的webservice,现在热门的dubbo,都是RPC的典型代表。Dubbo实现服务调用是通过RPC的方式,即客户端和服务端共用一个接口(将接口打成一个jar包,在客户端和服务端引入这个jar包),客户端面向接口写调用,服务端面向接口写实现,中间的网络通信交给框架去实现。
  • Http:http其实是一种网络传输协议,基于TCP,工作在应用层,规定了数据传输的格式。现在客户端浏览器与服务端通信基本都是采用Http协议,也可以用来进行远程服务调用。缺点是消息封装臃肿,优势是对服务的提供和调用方没有任何技术限定,自由灵活,更符合微服务理念。现在热门的Rest风格,就可以通过http协议来实现。

**区别:**RPC的机制是根据语言的API(language API)来定义的,而不是根据基于网络的应用来定义的。
如果公司全部采用Java技术栈,那么使用Dubbo作为微服务架构是一个不错的选择。
相反,如果公司的技术栈多样化,而且你更青睐Spring家族,那么Spring Cloud搭建微服务是不二之选。选择Spring Cloud套件,会使用Http方式来实现服务间调用。

1.2 Http客户端工具

既然微服务选择了Http,那么我们就需要考虑自己来实现对请求和响应的处理。不过开源世界已经有很多的http客户端工具,能够帮助我们做这些事情,例如:

  • HttpClient
  • OKHttp
  • URLConnection

不过这些不同的客户端,API各不相同。而Spring也有对http的客户端进行封装,提供了工具类叫RestTemplate。

1.3 Spring的RestTemplate

Spring提供了一个RestTemplate模板工具类,对基于Http的客户端进行了封装,并且实现了对象与json的序列化和反序列化,非常方便。RestTemplate并没有限定Http的客户端类型,而是进行了抽象,目前常用的3种都有支持:

  • HttpClient
  • OkHttp
  • JDK原生的URLConnection(默认的)

二、Dubbo和Zookeeper的关系

1. Apache Dubbo概述

1.1 Dubbo介绍

Apache Dubbo是一款高性能的Java RPC框架。其前身是阿里巴巴公司开源的一个高性能、轻量级的开源Java RPC框架,可以和Spring框架无缝集成。

什么是RPC?

RPC全称为remote procedure call,即远程过程调用。比如两台服务器A和B,A服务器上部署一个应用,B服务器上部署一个应用,A服务器上的应用想调用B服务器上的应用提供的方法,由于两个应用不在一个内存空间,不能直接调用,所以需要通过网络来表达调用的语义和传达调用的数据。

需要注意的是RPC并不是一个具体的技术,而是指整个网络远程调用过程。

RPC是一个泛化的概念,严格来说一切远程过程调用手段都属于RPC范畴。各种开发语言都有自己的RPC框架。Java中的RPC框架比较多,广泛使用的有RMI、Hessian、Dubbo等。

  • Dubbo提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。

1)透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。

2)软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。

3)服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。

1.2 Dubbo架构

Dubbo实现服务调用是通过RPC的方式,即客户端和服务端共用一个接口(将接口打成一个jar包,在客户端和服务端引入这个jar包),客户端面向接口写调用,服务端面向接口写实现,中间的网络通信交给框架去实现

Dubbo架构图(Dubbo官方提供)如下:

在这里插入图片描述

节点角色说明:

节点角色名称
Provider暴露服务的服务提供方
Consumer调用远程服务的服务消费方
Registry服务注册与发现的注册中心
Monitor统计服务的调用次数和调用时间的监控中心
Container服务运行容器

虚线都是异步访问,实线都是同步访问
蓝色虚线:在启动时完成的功能
红色虚线(实线)都是程序运行过程中执行的功能

调用关系说明:

  1. 服务容器负责启动,加载,运行服务提供者。
  2. 服务提供者在启动时,向注册中心注册自己提供的服务。
  3. 服务消费者在启动时,向注册中心订阅自己所需的服务。
  4. 注册中心返回服务提供者地址列表给消费者,如果有变更,注册中心将基于长连接推送变更数据给消费者。
  5. 服务消费者,从提供者地址列表中,基于软负载均衡算法,选一台提供者进行调用,如果调用失败,再选另一台调用。
  6. 服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心。
1.3 协议
<dubbo:protocol name="dubbo" port="20880"/>

一般在服务提供者一方配置,可以指定使用的协议名称和端口号。

其中Dubbo支持的协议有:dubbo、rmi、hessian、http、webservice、rest、redis等。

推荐使用的是dubbo协议。

dubbo 协议采用单一长连接和 NIO 异步通讯,适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况。不适合传送大数据量的服务,比如传文件,传视频等,除非请求量很低。

也可以在同一个工程中配置多个协议,不同服务可以使用不同的协议,例如:

<!-- 多协议配置 -->
<dubbo:protocol name="dubbo" port="20880" />
<dubbo:protocol name="rmi" port="1099" />
<!-- 使用dubbo协议暴露服务 -->
<dubbo:service interface="com.itheima.api.HelloService" ref="helloService" protocol="dubbo" />
<!-- 使用rmi协议暴露服务 -->
<dubbo:service interface="com.itheima.api.DemoService" ref="demoService" protocol="rmi" /> 
1.4 负载均衡

负载均衡(Load Balance):其实就是将请求分摊到多个操作单元上进行执行,从而共同完成工作任务。

在集群负载均衡时,Dubbo 提供了多种均衡策略(包括随机、轮询、最少活跃调用数、一致性Hash),缺省为random随机调用。

配置负载均衡策略,既可以在服务提供者一方配置,也可以在服务消费者一方配置。

2. Dubbo和Zookeeper的关系

1)Dubbo目前支持注册中心multicast zookeeper redis simple等,Dubbo建议使用Zookeeper作为服务的注册中心

2)Dubbo是管理中间层的工具,在业务层到数据仓库间有非常多服务的接入和提供者需要调度,dubbo提供一个框架解决这些问题。注意这里的dubbo只是一个框架,至于你在框架上放什么东西,完全取决于你,就像一个汽车骨架,你需要配你的轮子引擎。这个框架中要完成调度必须需要一个分布式的注册中心,存储所有服务的元数据,你可以用Zookeeper,你也可以用别的。

3)Dubbo将注册中心进行抽象,使得它可以外接不同的存储媒介给注册中心提供服务,有Zookeeper,memcached,redis等。引入了Zookeeper作为存储媒介,也就把Zookeeper的特性引进来了。首先是负载均衡,但注册中心的承载能力是有限的,在流量达到一定程度的时候要进行分流,负载均衡就是为分流而生的,一个Zookeeper群配合相应的web应用就可以很容易达到负载均衡;资源同步,单单有负载均衡还不够,节点之间的数据和资源需要同步,Zookeeper集群就天然具备有这样的功能;命名服务,将树状结构用于维护全局的服务地址列表,服务提供者在启动的时候,向Zookeeper上指定的点/dubbo/${serviceName}/providers目录下写入自己的url地址,这个操作就完成了服务的发布。其他特性还有master选举,分布式锁等。

三、Zookeeper和Eureka的区别

1. Eureka概述

1.1 Eureka介绍

Eureka本身是Netflix开源的一款提供服务注册和发现的产品,并且提供了相应的Java封装。在它的实现中,节点之间相互平等,部分注册中心的节点挂掉也不会对集群造成影响,即使集群只剩一个节点存活,也可以正常提供发现服务。哪怕是所有的服务注册节点都挂了,Eureka Clients(客户端)上也会缓存服务调用的信息。这就保证了我们微服务之间的互相调用足够健壮。

Eureka负责管理、记录服务提供者的信息。服务调用者无需自己寻找服务,而是把自己的需求告诉Eureka,然后Eureka会把符合你需求的服务告诉你。同时,服务提供方与Eureka之间通过“心跳” 机制进行监控,当某个服务提供方出现问题,Eureka自然会把它从服务列表中剔除。这就实现了服务的自动注册、发现、状态监控。

1.2 Eureka原理图

在这里插入图片描述

  • Eureka:就是服务注册中心(可以是一个集群),对外暴露自己的地址
  • 提供者:启动后向Eureka注册自己信息(地址,提供什么服务)
  • 消费者:向Eureka订阅服务,Eureka会将对应服务的所有提供者地址列表发送给消费者,并且定期更新
  • 心跳(续约):提供者定期通过http方式向Eureka刷新自己的状态
1.3 Eureka基础架构

Eureka架构中的三个核心角色:

  • 服务注册中心:Eureka的服务端应用,提供服务注册和发现功能
  • 服务提供者:提供服务的应用,可以是SpringBoot应用,也可以是其它任意技术实现,只要对外提供的是Rest风格服务即可。
  • 服务消费者:消费应用从注册中心获取服务列表,从而得知每个服务方的信息,知道去哪里调用服务方。
1.4 高可用的Eureka Server

Eureka Server即服务的注册中心可以是一个集群,形成高可用的Eureka中心。

  • 服务同步

多个Eureka Server之间也会互相注册为服务,当服务提供者注册到Eureka Server集群中的某个节点时,该节点会把服务的信息同步给集群中的每个节点,从而实现数据同步。因此,无论客户端访问到Eureka Server集群中的任意一个节点,都可以获取到完整的服务列表信息。

1.5 服务注册和服务续约
  • 服务注册

服务提供者在启动时,会检测配置属性中的:eureka.client.register-with-erueka=true 参数是否正确,事实上默认就是true。如果值确实为true,则会向EurekaServer发起一个Rest请求,并携带自己的元数据信息,Eureka Server会把这些信息保存到一个双层Map结构中。
第一层Map的Key就是服务id,一般是配置中的spring.application.name 属性
第二层Map的key是服务的实例id。一般host+ serviceId + port,例如: localhost:user-service:8081
值则是服务的实例对象,也就是说一个服务,可以同时启动多个不同实例,形成集群。

  • 服务续约

在注册服务完成以后,服务提供者会维持一个心跳(定时向EurekaServer发起Rest请求),告诉EurekaServer:“我还活着”。这个我们称为服务的续约(renew);

1.6 失效剔除和自我保护
  • 服务下线

当服务进行正常关闭操作时,它会触发一个服务下线的REST请求给Eureka Server,告诉服务注册中心:“我要下线了”。服务中心接受到请求之后,将该服务置为下线状态。

  • 失效剔除

有时我们的服务可能由于内存溢出或网络故障等原因使得服务不能正常的工作,而服务注册中心并未收到“服务下线”的请求。相对于服务提供者的“服务续约”操作,服务注册中心在启动时会创建一个定时任务,默认每隔一段时间(默认为60秒)将当前清单中超时(默认为90秒)没有续约的服务剔除,这个操作被称为失效剔除。

  • 自我保护

当服务未按时进行心跳续约时,Eureka会统计服务实例最近15分钟心跳续约的比例是否低于了85%。在生产环境下,因为网络延迟等原因,心跳失败实例的比例很有可能超标,但是此时就把服务剔除列表并不妥当,因为服务可能没有宕机。Eureka在这段时间内不会剔除任何服务实例,直到网络恢复正常。生产环境下这很有效,保证了大多数服务依然可用,不过也有可能获取到失败的服务实例,因此服务调用者必须做好服务的失败容错。

2. Zookeeper和Eureka的区别

都有注册中心的功能

2.1 CAP理论

分布式系统的三个指标:1、Consistency一致性;2、Availability可用性;3、Partition tolerance分区容错性。在这个特性中任何分布式系统只能保证两个。

C(Consistency):数据一致性。大家都知道,分布式系统中,数据会有副本。由于网络或者机器故障等因素,可能有些副本数据写入正确,有些却写入错误或者失败,这样就导致了数据的不一致了。而满足数据一致性规则,就是保证所有数据都要同步。

A(Availability):可用性。我们需要获取什么数据时,都能够正常的获取到想要的数据(当然,允许可接受范围内的网络延迟),也就是说,要保证任何时候请求数据都能够正常响应。

P(Partition Tolerance):分区容错性。当网络通信发生故障时,集群仍然可用,不会因为某个节点挂了或者存在问题,而影响整个系统的正常运作。

2.2 Eureka保证AP;Zookeeper保证CP

1)Zookeeper保证CP

Zookeeper是基于CP来设计的,即任何时刻对Zookeeper的访问请求能得到一致的数据结果。

当向注册中心查询服务列表时,可以容忍注册中心返回的时几分钟前的注册信息,但不能接受服务直接down机不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是Zookeeper会出现这样一种情况:当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30-120s,且选举期间整个Zookeeper集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得Zookeeper集群失去master节点是较大概率发送的事情,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不可容忍的

2)Eureka保证AP

Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册时如果发现连接失败,则自动切换至其他节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制:如果在15分钟内超过85%节点都没有正常心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时出现以下几种情况:

  • Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
  • Eureka仍然能够接收新服务的注册和查询请求,但是不会被同步到其他节点上(即保证当前节点的依然可用)
  • 当网络稳定时,当前实例新的注册信息会被同步到其他节点

因此,Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像Zookeeper那样会使整个注册服务瘫痪

Zookeeper的设计理念就是分布式协调服务,保证数据(配置数据,状态数据)在多个服务系统之间保证一致性,这也不难看出Zookeeper是属于CP特性(Zookeeper的核心算法是Zab,保证分布式系统下,数据如何在多个服务之间保证数据同步)。Eureka是吸取Zookeeper问题的经验,先保证可用性。

2.3 优秀博文摘抄

以下文字摘自参考资料第三篇博文:

1. ZooKeeper作为发现服务的问题
ZooKeeper(注:ZooKeeper是著名Hadoop的一个子项目,旨在解决大规模分布式应用场景下,服务协调同步(Coordinate Service)的问题;它可以为同在一个分布式系统中的其他服务提供:统一命名服务、配置管理、分布式锁服务、集群管理等功能)是个伟大的开源项目,它很成熟,有相当大的社区来支持它的发展,而且在生产环境得到了广泛的使用;但是用它来做Service发现服务解决方案则是个错误。

在分布式系统领域有个著名的CAP定理(C-数据一致性;A-服务可用性;P-服务对网络分区故障的容错性,这三个特性在任何分布式系统中不能同时满足,最多同时满足两个);ZooKeeper是个CP的,即任何时刻对ZooKeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性;但是它不能保证每次服务请求的可用性(注:也就是在极端环境下,ZooKeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果)。但是别忘了,ZooKeeper是分布式协调服务,它的职责是保证数据(注:配置数据,状态数据)在其管辖下的所有服务之间保持同步、一致;所以就不难理解为什么ZooKeeper被设计成CP而不是AP特性的了,如果是AP的,那么将会带来恐怖的后果(注:ZooKeeper就像交叉路口的信号灯一样,你能想象在交通要道突然信号灯失灵的情况吗?)。而且,作为ZooKeeper的核心实现算法Zab,就是解决了分布式系统下数据如何在多个服务之间保持同步问题的。

作为一个分布式协同服务,ZooKeeper非常好,但是对于Service发现服务来说就不合适了;因为对于Service发现服务来说就算是返回了包含不实的信息的结果也比什么都不返回要好;再者,对于Service发现服务而言,宁可返回某服务5分钟之前在哪几个服务器上可用的信息,也不能因为暂时的网络故障而找不到可用的服务器,而不返回任何结果。所以说,用ZooKeeper来做Service发现服务是肯定错误的,如果你这么用就惨了!

而且更何况,如果被用作Service发现服务,ZooKeeper本身并没有正确的处理网络分割的问题;而在云端,网络分割问题跟其他类型的故障一样的确会发生;所以最好提前对这个问题做好100%的准备。就像Jepsen在ZooKeeper网站上发布的博客中所说:在ZooKeeper中,如果在同一个网络分区(partition)的节点数(nodes)数达不到ZooKeeper选取Leader节点的“法定人数”时,它们就会从ZooKeeper中断开,当然同时也就不能提供Service发现服务了。

如果给ZooKeeper加上客户端缓存(注:给ZooKeeper节点配上本地缓存)或者其他类似技术的话可以缓解ZooKeeper因为网络故障造成节点同步信息错误的问题。Pinterest与Airbnb公司就使用了这个方法来防止ZooKeeper故障发生。这种方式可以从表面上解决这个问题,具体地说,当部分或者所有节点跟ZooKeeper断开的情况下,每个节点还可以从本地缓存中获取到数据;但是,即便如此,ZooKeeper下所有节点不可能保证任何时候都能缓存所有的服务注册信息。如果ZooKeeper下所有节点都断开了,或者集群中出现了网络分割的故障(注:由于交换机故障导致交换机底下的子网间不能互访);那么ZooKeeper会将它们都从自己管理范围中剔除出去,外界就不能访问到这些节点了,即便这些节点本身是“健康”的,可以正常提供服务的;所以导致到达这些节点的服务请求被丢失了。(注:这也是为什么ZooKeeper不满足CAP中A的原因)

更深层次的原因是,ZooKeeper是按照CP原则构建的,也就是说它能保证每个节点的数据保持一致,而为ZooKeeper加上缓存的做法的目的是为了让ZooKeeper变得更加可靠(available);但是,ZooKeeper设计的本意是保持节点的数据一致,也就是CP。所以,这样一来,你可能既得不到一个数据一致的(CP)也得不到一个高可用的(AP)的Service发现服务了;因为,这相当于你在一个已有的CP系统上强制栓了一个AP的系统,这在本质上就行不通的!一个Service发现服务应该从一开始就被设计成高可用的才行!

如果抛开CAP原理不管,正确的设置与维护ZooKeeper服务就非常的困难;错误会经常发生,导致很多工程被建立只是为了减轻维护ZooKeeper的难度。这些错误不仅存在与客户端而且还存在于ZooKeeper服务器本身。Knewton平台很多故障就是由于ZooKeeper使用不当而导致的。那些看似简单的操作,如:正确的重建观察者(reestablishing watcher)、客户端Session与异常的处理与在ZK窗口中管理内存都是非常容易导致ZooKeeper出错的。同时,我们确实也遇到过ZooKeeper的一些经典bug:ZooKeeper-1159 与ZooKeeper-1576;我们甚至在生产环境中遇到过ZooKeeper选举Leader节点失败的情况。这些问题之所以会出现,在于ZooKeeper需要管理与保障所管辖服务群的Session与网络连接资源(注:这些资源的管理在分布式系统环境下是极其困难的);但是它不负责管理服务的发现,所以使用ZooKeeper当Service发现服务得不偿失。
 
 
2. 做出正确的选择:Eureka的成功
我们把Service发现服务从ZooKeeper切换到了Eureka平台,它是一个开源的服务发现解决方案,由Netflix公司开发。(注:Eureka由两个组件组成:Eureka服务器和Eureka客户端。Eureka服务器用作服务注册服务器。Eureka客户端是一个java客户端,用来简化与服务器的交互、作为轮询负载均衡器,并提供服务的故障切换支持。)Eureka一开始就被设计成高可用与可伸缩的Service发现服务,这两个特点也是Netflix公司开发所有平台的两个特色。(他们都在讨论Eureka)。自从切换工作开始到现在,我们实现了在生产环境中所有依赖于Eureka的产品没有下线维护的记录。我们也被告知过,在云平台做服务迁移注定要遇到失败;但是我们从这个例子中得到的经验是,一个优秀的Service发现服务在其中发挥了至关重要的作用!

首先,在Eureka平台中,如果某台服务器宕机,Eureka不会有类似于ZooKeeper的选举leader的过程;客户端请求会自动切换到新的Eureka节点;当宕机的服务器重新恢复后,Eureka会再次将其纳入到服务器集群管理之中;而对于它来说,所有要做的无非是同步一些新的服务注册信息而已。所以,再也不用担心有“掉队”的服务器恢复以后,会从Eureka服务器集群中剔除出去的风险了。Eureka甚至被设计用来应付范围更广的网络分割故障,并实现“0”宕机维护需求。当网络分割故障发生时,每个Eureka节点,会持续的对外提供服务(注:ZooKeeper不会):接收新的服务注册同时将它们提供给下游的服务发现请求。这样一来,就可以实现在同一个子网中(same side of partition),新发布的服务仍然可以被发现与访问。

但是,Eureka做到的不止这些。正常配置下,Eureka内置了心跳服务,用于淘汰一些“濒死”的服务器;如果在Eureka中注册的服务,它的“心跳”变得迟缓时,Eureka会将其整个剔除出管理范围(这点有点像ZooKeeper的做法)。这是个很好的功能,但是当网络分割故障发生时,这也是非常危险的;因为,那些因为网络问题(注:心跳慢被剔除了)而被剔除出去的服务器本身是很”健康“的,只是因为网络分割故障把Eureka集群分割成了独立的子网而不能互访而已。

幸运的是,Netflix考虑到了这个缺陷。如果Eureka服务节点在短时间里丢失了大量的心跳连接(注:可能发生了网络故障),那么这个Eureka节点会进入”自我保护模式“,同时保留那些“心跳死亡“的服务注册信息不过期。此时,这个Eureka节点对于新的服务还能提供注册服务,对于”死亡“的仍然保留,以防还有客户端向其发起请求。当网络故障恢复后,这个Eureka节点会退出”自我保护模式“。所以Eureka的哲学是,同时保留”好数据“与”坏数据“总比丢掉任何”好数据“要更好,所以这种模式在实践中非常有效。

最后,Eureka还有客户端缓存功能(注:Eureka分为客户端程序与服务器端程序两个部分,客户端程序负责向外提供注册与发现服务接口)。所以即便Eureka集群中所有节点都失效,或者发生网络分割故障导致客户端不能访问任何一台Eureka服务器;Eureka服务的消费者仍然可以通过Eureka客户端缓存来获取现有的服务注册信息。甚至最极端的环境下,所有正常的Eureka节点都不对请求产生相应,也没有更好的服务器解决方案来解决这种问题时;得益于Eureka的客户端缓存技术,消费者服务仍然可以通过Eureka客户端查询与获取注册服务信息,这点很重要。

Eureka的构架保证了它能够成为Service发现服务。它相对与ZooKeeper来说剔除了Leader节点的选取或者事务日志机制,这样做有利于减少使用者维护的难度也保证了Eureka的在运行时的健壮性。而且Eureka就是为发现服务所设计的,它有独立的客户端程序库,同时提供心跳服务、服务健康监测、自动发布服务与自动刷新缓存的功能。但是,如果使用ZooKeeper你必须自己来实现这些功能。Eureka的所有库都是开源的,所有人都能看到与使用这些源代码,这比那些只有一两个人能看或者维护的客户端库要好。

维护Eureka服务器也非常的简单,比如,切换一个节点只需要在现有EIP下移除一个现有的节点然后添加一个新的就行。Eureka提供了一个web-based的图形化的运维界面,在这个界面中可以查看Eureka所管理的注册服务的运行状态信息:是否健康,运行日志等。Eureka甚至提供了Restful-API接口,方便第三方程序集成Eureka的功能。
 

3. 结论
我们来比较一下,在CAP理论中,zk更看重C和P,即一致性和分区容错性。但Eureka更在意的是A和P,A为高可用。zk中有master和follower区别,当进入选举模式时,就无法正常对外提供服务。但Eureka中,集群是对等的,地位是相同的,虽不能保证一致性,但至少可以提供注册服务。 根据不同的业务场景,各有取舍吧。

四、深入Zookeeper

通过前面的Dubbo架构图可以看到,Registry(服务注册中心)在其中起着至关重要的作用。Dubbo官方推荐使用Zookeeper作为服务注册中心。

1. Zookeeper介绍

Zookeeper 是 Apache Hadoop 的子项目,是一个树型的目录服务,支持变更推送,适合作为 Dubbo 服务的注册中心,工业强度较高,可用于生产环境,并推荐使用 。

Zookeeper树型目录服务:

在这里插入图片描述

流程说明:

  • 服务提供者(Provider)启动时: 向 /dubbo/com.foo.BarService/providers 目录下写入自己的 URL 地址
  • 服务消费者(Consumer)启动时: 订阅 /dubbo/com.foo.BarService/providers 目录下的提供者 URL 地址。并向 /dubbo/com.foo.BarService/consumers 目录下写入自己的 URL 地址
  • 监控中心(Monitor)启动时: 订阅 /dubbo/com.foo.BarService 目录下的所有提供者和消费者 URL 地址

2. Zookeeper详解

这部分JavaGuide中已经总结的很好了,链接如下。

  1. JavaGuide-【入门】Zookeeper相关概念总结
  2. JavaGuide-【进阶】Zookeeper相关概念总结
  3. JavaGuide-【实战】Zookeeper实战

#、参考资料

  1. 黑马程序员教程 Dubbo讲义
  2. Eureka和ZooKeeper的区别
  3. Eureka与ZooKeeper对比,Eureka的优势
  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值