Luogu P4894 【GodFly求解法向量】

解方程大法好!

我们将题中 x ∗ x 1 + y ∗ y 1 + z ∗ z 1 = 0 x*x_1+y*y_1+z*z_1 = 0 xx1+yy1+zz1=0 称为 ① 式,

x ∗ x 2 + y ∗ y 2 + z ∗ z 2 = 0 x*x_2+y*y_2+z*z_2 = 0 xx2+yy2+zz2=0 称为 ② 式。

再将 ① 式乘上 x 2 x_2 x2,将 ② 式乘上 x 1 x_1 x1,得:

{ x ∗ x 1 ∗ x 2 + y ∗ y 1 ∗ x 2 + z ∗ z 1 ∗ x 2 = 0 x ∗ x 2 ∗ x 1 + y ∗ y 2 ∗ x 1 + z ∗ z 2 ∗ x 1 = 0 \left\{ \begin{aligned} x*x_1*x_2+y*y_1*x_2+z*z_1*x_2 = 0 \\ x*x_2*x_1+y*y_2*x_1+z*z_2*x_1 = 0 \\ \end{aligned} \right. {xx1x2+yy1x2+zz1x2=0xx2x1+yy2x1+zz2x1=0

将 ① 减去 ②,得:

y ∗ ( y 1 ∗ x 2 − x 1 ∗ y 2 ) + z ∗ ( z 1 ∗ x 2 − z 2 ∗ x 1 ) = 0 y*(y_1*x_2-x_1*y_2)+z*(z_1*x_2-z_2*x_1) = 0 y(y1x2x1y2)+z(z1x2z2x1)=0

发现, y = p ( y 1 ∗ x 2 − x 1 ∗ y 2 ) y=p(y_1*x_2-x_1*y_2) y=p(y1x2x1y2) z = q ( z 1 ∗ x 2 − z 2 ∗ x 1 ) z=q(z_1*x_2-z_2*x_1) z=q(z1x2z2x1) 时,等式成立。

其中, p = 1 p=1 p=1 , q = 1 q=1 q=1就是一组解。

于是,这题就做完了。

注意:要特判 x 1 + x 2 = 0 x1+x2=0 x1+x2=0 的情况。

CODE:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define int long long
int x1,x2,y1,y2,z1,z2;
signed main(){
	while(~scanf("%lld%lld%lld%lld%lld%lld",&x1,&y1,&z1,&x2,&y2,&z2)){
		if(x1+x2==0){
			int t1=y1+y2;
			int t2=z1+z2;
			int t3=__gcd(t1,t2);
			t1/=t3;
			t2/=t3;
			int x0,y0,z0;
			y0=t2;
			z0=-t1;
			x0=0;
			printf("%lld %lld %lld\n",x0,y0,z0);
			return 0;
		}
		int t1=x2*y1-x1*y2;
		int t2=x2*z1-x1*z2;
		int t3=__gcd(t1,t2);
		if(t3==0){
			printf("1 -1 0\n");
			continue;
		}
		t1=t1/t3;
		t2=t2/t3;		//将两式化简
		int x0=0,y0=t2,z0=-t1;
		while((-y0*y1-y0*y2-z0*z1-z0*z2)%(x1+x2)!=0)
			y0+=t2,z0-=t1;
		x0=(-y0*y1-y0*y2-z0*z1-z0*z2)/(x1+x2);	//求 x0
		printf("%lld %lld %lld\n",x0,y0,z0);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值