【pytorch】Batch-norm layer loss计算

Batchnor-layer loss calculation

在实现data-free KD 时用到的loss函数的计算。这个函数放在batch norm 1d层之后计算不同层输出之间的差异。

思路:通过pytorch设置hook钩子函数,获取某一个特定层的输出;

可以计算指定的层的输出之间的差异,即输出的统计量的差异,一般以均值和方差来衡量这个统计量;

重点:输出是什么,shape或者是size是什么样子的?在内存中是怎么存储的?

下面以一个例子来看一下具体的维度的变化,given a three-dimensional tensor, [batch,text_length,embedding feature num]

import torch

def Gaussian_kd(mean, var, T_mean, T_var):
    num = (mean-T_mean)**2 + var
    denom = 2*T_var
    std = torch.sqrt(var)
    T_std = torch.sqrt(T_var)

    return num/denom - torch.log(std/T_std) - 0.5  # 对应着论文中的公式(5),计算的是两个高斯分布之间额KL divergence

x = torch.randn(2, 1, 5) # 2个batch,单词长度为1,embedding之后的feature num是1500
nch = x.shape[1] # 1,获得句子的长度
mean = x.mean([0,2]) # 除了句子长度之外,获得batch以及embeding feature维度上的均值以及方差

var = x.permute(1,0,2).contiguous().view([nch,-1]).var(1,unbiased=False) # reshape,只获得通道维度上的统计量的值,为了内存连续读取,使用contiguous以及view函数

y = torch.randn(2, 1, 5) 
nch_y = y.shape[1]
mean_y = y.mean([0,2])
var_y = y.permute(1,0,2).contiguous().view([nch_y,-1]).var(1,unbiased=False)

g_loss = Gaussian_kd(mean,var,mean_y,var_y)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用PyTorch实现Transformer模型进行CIFAR-10图像分类任务的代码,同时画出了loss变化曲线和准确率变化曲线: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义超参数 num_epochs = 10 batch_size = 128 learning_rate = 0.001 # 加载CIFAR-10数据集并做数据增强 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义Transformer模型 class TransformerModel(nn.Module): def __init__(self, input_dim, hidden_dim, num_classes, num_layers, num_heads, dropout): super().__init__() self.embedding = nn.Linear(input_dim, hidden_dim) self.pos_encoding = PositionalEncoding(hidden_dim, dropout) self.transformer_layers = nn.ModuleList([ TransformerLayer(hidden_dim, num_heads, dropout) for _ in range(num_layers) ]) self.fc = nn.Linear(hidden_dim, num_classes) def forward(self, x): x = self.embedding(x) x = self.pos_encoding(x) for layer in self.transformer_layers: x = layer(x) x = torch.mean(x, dim=1) x = self.fc(x) return x class PositionalEncoding(nn.Module): def __init__(self, hidden_dim, dropout, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, hidden_dim) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class TransformerLayer(nn.Module): def __init__(self, hidden_dim, num_heads, dropout): super().__init__() self.self_attn = nn.MultiheadAttention(hidden_dim, num_heads, dropout=dropout) self.dropout1 = nn.Dropout(p=dropout) self.norm1 = nn.LayerNorm(hidden_dim) self.fc = nn.Sequential( nn.Linear(hidden_dim, 4 * hidden_dim), nn.GELU(), nn.Linear(4 * hidden_dim, hidden_dim), nn.Dropout(p=dropout) ) self.dropout2 = nn.Dropout(p=dropout) self.norm2 = nn.LayerNorm(hidden_dim) def forward(self, x): attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout1(attn_output) x = self.norm1(x) fc_output = self.fc(x) x = x + self.dropout2(fc_output) x = self.norm2(x) return x # 实例化模型 model = TransformerModel(input_dim=32*32*3, hidden_dim=512, num_classes=10, num_layers=6, num_heads=8, dropout=0.1).to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] total_step = len(train_loader) for epoch in range(num_epochs): running_loss = 0.0 running_corrects = 0 for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) running_loss += loss.item() * images.size(0) running_corrects += torch.sum(predicted == labels.data) if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) epoch_loss = running_loss / len(train_dataset) epoch_acc = running_corrects.double() / len(train_dataset) train_loss_list.append(epoch_loss) train_acc_list.append(epoch_acc) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.4f}' .format(epoch+1, num_epochs, epoch_loss, epoch_acc)) # 在测试集上测试模型 with torch.no_grad(): running_loss = 0.0 running_corrects = 0 for images, labels in test_loader: images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) _, predicted = torch.max(outputs.data, 1) running_loss += loss.item() * images.size(0) running_corrects += torch.sum(predicted == labels.data) epoch_loss = running_loss / len(test_dataset) epoch_acc = running_corrects.double() / len(test_dataset) test_loss_list.append(epoch_loss) test_acc_list.append(epoch_acc) print('Epoch [{}/{}], Test Loss: {:.4f}, Test Accuracy: {:.4f}' .format(epoch+1, num_epochs, epoch_loss, epoch_acc)) # 画出loss变化曲线和准确率变化曲线 plt.subplot(2, 1, 1) plt.plot(train_loss_list, label='Train') plt.plot(test_loss_list, label='Test') plt.title('Loss') plt.legend() plt.subplot(2, 1, 2) plt.plot(train_acc_list, label='Train') plt.plot(test_acc_list, label='Test') plt.title('Accuracy') plt.legend() plt.show() # 在测试集上测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 32*32*3).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.4f}'.format(correct / total)) ``` 在上面的代码中,我们使用了PyTorch内置的`nn.MultiheadAttention`和`nn.LayerNorm`来实现Transformer模型中的自注意力机制和归一化,同时也实现了Transformer中的位置编码和前馈网络。在训练过程中,我们记录了每个epoch的训练集loss和准确率、测试集loss和准确率,并画出了loss变化曲线和准确率变化曲线。最后,我们在测试集上测试了模型的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值