KMP模式匹配算法

朴素的模式匹配算法

对主串的每一个字符作为子串的开头,与要匹配的字符串进行匹配。对主串做大循环,每个字符开头做需匹配长度的小循环,直到匹配成功或者全部遍历完成为止

示例程序(朴素的模式匹配)

int Index(char *S, char *T)
{
    int i, j;
    // 直到遍历主串完成或者需匹配字符串全部匹配成功
    for (i = 0, j = 0; i < (int)strlen(S) && j < (int)strlen(T);) {
        if (S[i] == T[j]) {
            // 如果当前字符相同,则比较下一个字符
            i++;
            j++;
        } else {
            // 如果当前字符不同,则主串进行回溯,跳转到当前匹配的开头的下一位
            // 需匹配字符串从头开始
            i = i - j + 1;
            j = 0;
        }
    }
    // 判断是否全部匹配成功,返回位置(第)
    if (j == (int)strlen(T)) {
        return i - j + 1;
    } else {
        return -1;
    }
}

KMP模式匹配算法

按照朴素的模式匹配算法进行字符串的查找,我们仔细想想会发现,有些步骤是多余的,例如:

主串S:abcfgex
需要匹配串T:abcx

第1次:
abcdefgex
abcdex
i=6,j=6,f和x不相等

第2次:
abcdefgex
 abcdex
i=2,j=1,a和b不相等

第3次:
abcdefgex
  abcdex
i=3,j=1,a和c不相等

第4次:
abcdefgex
   abcdex
i=4,j=1,a和d不相等

第5次:
abcdefgex
    abcdex
i=5,j=1,a和e不相等

第6次:
abcdefgex
     abcdex
i=6,j=1,a和f不相等

仔细分析可以发现,在第一次匹配中,我们已经知道S和T的abcde是一样的,而且T串的首字符与后面的字符均不相同,所以其实第2,3,4,5次匹配是多余的,第6次由于S和T不相同,不能判断T的首字符是否与S不同,固从第6次开始继续比较即可

那么可能有人又要问了,假如T串后面也有字符a那该怎么办呢?

接下来我们看看下面的例子:

主串S:abcababcacc
需要匹配串T:abcabx

第1次:
abcababcacc
abcabx
i
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值