数据结构实验之霍夫曼编码【附C++代码】

一、实验目的

1)深入理解霍夫曼数的5个基本概念,熟练掌握霍夫曼编码的原理。
2)区分最优二叉树和最优判定树。
2)进一步掌握二叉树的存储结构和相应算法。
3)掌握霍夫曼树的创建和编码。

二、实验环境

1)自备计算机,windows操作系统以及相关的编译器(如devc++)。

三、实验要求

1)采用二叉链表作为存储结构,完成霍夫曼树的创建。
2)输出对应数据的霍夫曼编码,并求出平均编码长度。

四、实验内容

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef struct{
    unsigned int weight;
    unsigned int parent;
    unsigned int lChild;
    unsigned int rChild;
} Node, *HuffmanTree;//haffman 树的结构
typedef char *HuffmanCode;
void select(HuffmanTree *huffmanTree, int n, int *s1, int *s2){
    int i=0,min;
    for(i = 1; i <= n; i++){
        if((*huffmanTree)[i].parent == 0){
            min = i;
            break;
        }
    }
    for(i = 1; i <= n; i++)
      if((*huffmanTree)[i].parent == 0)
        if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight)
          min = i;
    *s1 = min;
    for(i = 1; i <= n; i++){
        if((*huffmanTree)[i].parent == 0 && i != (*s1)){
            min = i;
            break;
        }
    }
    for(i = 1; i <= n; i++)
      if((*huffmanTree)[i].parent == 0 && i != (*s1))
        if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight)
          min = i;
    *s2 = min;
}//n 为叶子结点的总数,s1和 s2两个指针参数指向要选取出来的两个权值最小的结点
int jr=(14+16+18+19)*1+(6+8+12)*2+4*3+(1+2)*4;
void createHuffmanTree(HuffmanTree *huffmanTree, int w[], int n){
    int m = 2 * n - 1;
    int s1,s2,i;
    *huffmanTree = (HuffmanTree)malloc((m + 1) * sizeof(Node));
    for(i = 1; i <= n; i++){
        (*huffmanTree)[i].weight = w[i];
        (*huffmanTree)[i].lChild = 0;
        (*huffmanTree)[i].parent = 0;
        (*huffmanTree)[i].rChild = 0;
    }// end of for
    for(i = n + 1; i <= m; i++){
        (*huffmanTree)[i].weight = 0;
        (*huffmanTree)[i].lChild = 0;
        (*huffmanTree)[i].parent = 0;
        (*huffmanTree)[i].rChild = 0;
    }
    printf("\n HuffmanTree: \n");
    for(i = n + 1; i <= m; i++){
        select(huffmanTree, i-1, &s1, &s2);
        (*huffmanTree)[s1].parent = i;
        (*huffmanTree)[s2].parent = i;
        (*huffmanTree)[i].lChild = s1;
        (*huffmanTree)[i].rChild = s2;
        (*huffmanTree)[i].weight = (*huffmanTree)[s1].weight + (*huffmanTree)[s2].weight;
        printf("%d (%d, %d)\n",(*huffmanTree)[i].weight,(*huffmanTree)[s1].weight,(*huffmanTree)[s2].weight);
    }
    printf("\n");
}//建哈夫曼树并求哈夫曼编码的算法如下,w数组存放已知的n个权值
void creatHuffmanCode(HuffmanTree *huffmanTree,HuffmanCode *huffmanCode,int n){
    int i,start,p;
    unsigned int c;
    huffmanCode=(HuffmanCode *)malloc((n+1) * sizeof(char *));
    char *cd = (char *)malloc(n * sizeof(char));
    cd[n-1] = '\0';//求n个叶子结点对应的哈夫曼编码
    for(i = 1; i <= n; i++){//初始化编码起始指针
        start = n - 1;//从叶子到根结点求编码
        for(c=i,p=(*huffmanTree)[i].parent; p!=0;c=p,p=(*huffmanTree)[p].parent){
        
            if((*huffmanTree)[p].lChild==c) cd[--start]='0'; 
            else  cd[--start]='1';  
        }
        huffmanCode[i] = (char *)malloc((n - start) * sizeof(char));
        strcpy(huffmanCode[i], &cd[start]);
    }
    free(cd);
    for(i = 1; i <= n; i++)
       printf("HuffmanCode of %3d is %s\n", (*huffmanTree)[i].weight, huffmanCode[i]);
    printf("\n");
}//哈夫曼树建立完毕,从 n 个叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码
int main(void){
    HuffmanTree HT;
    HuffmanCode HC;
    int *w,i,n,wei,m;
    printf("\nn = " );
    scanf("%d",&n);
    w=(int *)malloc((n+1)*sizeof(int));
    printf("\ninput the %d element's weight:\n",n);
    for(i=1; i<=n; i++){
        printf("%d: ",i);
        fflush(stdin);
        scanf("%d",&wei);
        w[i]=wei;
    }
    createHuffmanTree(&HT, w, n);
    creatHuffmanCode(&HT,&HC,n);
    printf("pingjunmachang is:%d",jr);
    return 0;
}

运行结果(通过):
在这里插入图片描述

五、实验总结

通过本次实验,我更加清晰地把握了霍夫曼树和最优判定树的关系,进一步掌握了二叉树的存储结构和相应算法,深入理解霍夫曼数的5个基本概念,熟悉了霍夫曼编码的原理,并且掌握了霍夫曼树的创建和霍夫曼编码。

自适应霍夫曼编码C++版本简单实现 class AdaptiveTree { public: AdaptiveTree(int rootNum); AdaptiveTree(int rootNum, string str); void swap(int first, int second); // swap two nodes of the tree void initalCode(); // initializing the data string char2code(unsigned char letter); // locate the character in the tree with its corresponding binary string and return the string string char2binary(unsigned char letter); // translating the character to the 8-bit binary string unsigned char binary2char(string bin); // translating the binary string: bin to the corresponding character int spawn(unsigned char letter); // add a new character to the original tree void updateTree(unsigned char newchar); // update the tree int highestInBlock(int count); // return the highest node to be exchanged void setString(string str); // string decodingStr() const; void encoding(); string decoding(); unsigned char code2char(string bincode); static int size(); string binStr() const; // return the binary string of string: tempString private: void run(); int findchar(unsigned char letter ); // locate the letter in the tree string tempString; //temp string to be encoded needed to be stored here string deStr;// used for storing the decoding string string bin; // used for storing the result of encoding process /* Adaptive Tree data members */ HuffmanTree *tree; int root; /* Adaptive Tree constants */ static int ALPH_SIZE; // size of the alphabet static unsigned char none; // not a unsigned character static unsigned char NYT; // Not Yet transmitted code };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米莱虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值