地图行程规划最优解-蚁群算法-详细介绍&Code

本文介绍了如何使用蚁群算法解决行程规划问题,通过设定起点和其他点的距离,利用高德API获取最短路径,并讨论了算法的主要参数如蚂蚁数量、信息素因子等。文章详细阐述了算法思路,展示了算法流程图,并给出了代码设计部分,包括蚂蚁类、常量类和算法核心类。
摘要由CSDN通过智能技术生成

背景

给出一个行程规划问题,就是去一个城市几个地点拜访,要求给出串联的最短距离

思考

这是一个旅行商问题,要求到终点完成拜访,我们可以采用蚁群算法

介绍

蚁群算法用蚂蚁的行走路径表示 (待优化问题的) 可行解,整个蚂蚁群体的所有路径构成 (待优化问题的) 解空间路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是 (待优化问题的) 最优解


思路

  • 设定一个起点,其他的都是需要拜访的点,所有点设为一个数组,循环设置每个点为起点&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米莱虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值